Prototyping and Algorithm Integration in Medical Visualization

Felix Ritter, MeVis Research Bremen, Germany
Outline

- Prototyping
- Visual Programming Platforms
- Requirement Analysis
- Levels of Integration
- Prototyping Example
Innovation in medical visualization requires close collaboration between…

Prototyping serves as a common language
Requirement Analysis 1

Research

- variable scenarios
- »expert« parametrization
- fast changes
- little testing

Clinical use

- efficient workflow
- easy handling
- standardization
- stable execution

Prototyping platform should provide commonly required features
Visual Programming / Prototyping Platforms

- AVS Express
- Amira
- DeVIDE
- SCIRun
- MeVisLab
Requirement Analysis 2

- Import and export of medical image data (DICOM)
- Coherent visualization of data in 2D and 3D
- Interaction support in 2D and 3D
- Combined Volume and Surface Rendering
- Powerful imaging and graphics frameworks that interact
- GUI building support, scripting to add dynamic behavior
Requirement Analysis 2

- Import and export of medical image data (DICOM)
- Coherent visualization of data in 2D and 3D
- Interaction support in 2D and 3D
- Combined Volume and Surface Rendering
- Powerful imaging and graphics frameworks that interact
- GUI building support, scripting to add dynamic behavior
Requirement Analysis 2

- Import and export of medical image data (DICOM)
- Coherent visualization of data in 2D and 3D
- Interaction support in 2D and 3D
- Combined Volume and Surface Rendering
 - Powerful imaging and graphics frameworks that interact
 - GUI building support, scripting to add dynamic behavior
Requirement Analysis 2

- Import and export of medical image data (DICOM)
- Coherent visualization of data in 2D and 3D
- Interaction support in 2D and 3D
- Combined Volume and Surface Rendering
- Powerful imaging and graphics frameworks that interact
 - GUI building support, scripting to add dynamic behavior
Requirement Analysis 2

- Import and export of medical image data (DICOM)
- Coherent visualization of data in 2D and 3D
- Interaction support in 2D and 3D
- Combined Volume and Surface Rendering
- Powerful imaging and graphics frameworks that interact
- GUI building support, scripting to add dynamic behavior
Integration at different levels

- low-level *(Module level)*
 - High performance implementation of core functionality
 - Build on powerful frameworks

- medium-level *(Network level)*
 - Combine low-level algorithms to form complex algorithms visually
 - Build on a rich algorithm library

- high-level *(Application level)*
 - Design and build user interfaces
 - Hide network complexity
Prototyping a Small Filter Application

Click on a connector to display a data object.
Conclusion

‣ Visual prototyping facilitates the communication between clinical users, researchers, and developers

‣ Using a prototyping platform accelerates the exploration of algorithms in clinical settings

‣ Leveraging the powerful base functionality allows you to concentrate on your own innovative concepts