Fully-Automatic Determination of the Arterial Input Function for Dynamic Contrast-Enhanced Pulmonary MR Imaging (DCE-pMRI)

Kohlmann P.1, Laue H.1, Anjorin A.2, Wolf U.3, Terekhov M.3, Krass S.1, Peitgen H.-O.1

1Fraunhofer MEVIS - Institute for Medical Image Computing, Bremen, Germany
2University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany
3Johannes Gutenberg University Medical Center Mainz, Department of Radiology, Mainz, Germany
Purpose

- Perfusion is important functional parameter for diagnosis of lung diseases
- Contrast agent (CA) administration combined with MRI allows quantitative assessment of pulmonary perfusion
- Arterial input function (AIF) necessary for calculations
- Conventional AIF definition: Manual drawing of region-of-interest (ROI) within the pulmonary artery
- Potential benefit of proposed automatic determination:
 - Precalculation of perfusion parameter maps during data import
 - Improved reproducibility of the calculations (e.g., for comparability of baseline and follow-up examinations)
Material

MR Perfusion Imaging & Subjects

- MR perfusion imaging
 - CA: Intravenous injection of paramagnetic gadolinium chelate
 - Sequence: FLASH (fast low-angle shot) - T1-weighted gradient echo technique with short repetition time (TR) and short echo time (TE)
 - Voxel size: ~ 2x2x5 mm³
 - Temporal resolution: ~ 1.3 sec

- Subjects: 7 male patients (14 DCE-pMRI data sets) from ongoing study
 - 6x chronic obstructive pulmonary disease (COPD) GOLD I-IV
 - 1x mild asthma
 - 24h repeatability
Methods

Calculation of Perfusion Parameters

- Calculation of perfusion parameters (blood flow, blood volume, mean transit time) based on singular value decomposition technique (see: [1][2])

![Perfusion image](image1)

![AIF definition](image2)

![Blood flow parameter map](image3)

Methods

Automatic AIF Determination

- Successive image-processing techniques for extraction of pulmonary artery
 - Removal of unlikely voxels (I)
 - First refinement step (II)
 - Second refinement step (III)
 - Skeletonization and graph analysis (IV)
Methods

Automatic AIF Determination (cont.)

- AIF definition
 - Branching position of pulmonary artery centerline detected by image processing steps
 - Extraction of circular or spherical region around this position
 Current implementation: circular, including 32 voxels (~ 610 mm³)
 - AIF curve consists of mean values of these voxels in every time step
Results and Discussion

Exemplary Results

- Results of presented method for baseline examinations (A,C) and corresponding follow-up examinations (B,D) of two patients.
Results and Discussion

Accuracy & Performance

- Correct identification of pulmonary artery branching point in all 14 data sets
- Presented method not intended for exact segmentation of pulmonary artery (but might provide valuable input for segmentation algorithms)
- Fixed size and shape of ROI which includes AIF voxels in current implementation; study needed to evaluate if this is a valid assumption
- Only few seconds computation time of automatic AIF detection on standard PC
Conclusions

- This work eliminates influence of person who draws AIF manually on outcome of quantitative pulmonary perfusion analysis
- Further study needed to evaluate a better comparability of longitudinal perfusion examinations and examinations of different patients with proposed method
- Automation of AIF determination allows generation of perfusion parameter maps in preprocessing step already during data import

Acknowledgment
The work was supported by the Competence Network Asthma/COPD (www.asconet.net) funded by the German Federal Ministry of Education and Research (FKZ 01GI0881-0888). Patient data is courtesy of University Hospital Heidelberg and University Hospital Mainz.