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Finite Element Calculations

Physical problem:
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physical process

FE Simulation:

1 representation of object, PDE for physical process

2 geometric discretization: mesh (grid points and connectivity)

3 basis functions for discretization of continuous quantity

4 PDE leads to system of equations

5 solve

6 interpret and visualize result
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Composite Finite Elements

Classical FE:

mesh with geometric complexity

simple basis functions.

Composite FE:

regular mesh

complicated basis functions



Jumping Coefficients

coefficient discontinuous across interface

solution continuous but has kink

want to represent kink by CFE basis functions on regular mesh



Notation

regular cubes and triangles

virtual nodes

virtual triangles

(geometrically) constraining nodes

extrapolation
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Example Setting

κ+ = 1κ− = 2

1

0.2

0

s+ = 1.2

s− = 0.6

1
3

Kink ratio (“slope outside over slope inside”)

κ =
κ−
κ+

=
s+
s−

= 2 (1)
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{
u : x 7→

{
κb(x− z) + d x ≤ z
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Construction of CFE Basis Functions in 1D

v0 = 0 v1 = 1z = 1
3

N

Problem: find extrapolation weights wv0
z ,wv1

z such that

u(z) = wv0
z u(v0) +wv1

z u(v1) ∀u ∈ E (2)

Then let

ϕCFE
v0

= 1 · ϕvirt
v0

+wv0
z · ϕvirt

z and (3)

ϕCFE
v1

= wv1
z · ϕvirt

z + 1 · ϕvirt
v0

(4)
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3

N

Set up system of equations (nonsymmetric):

η0(z) = wv0
z · η0(v0) +wv1

z · η0(v1) (2)

η1(z) = wv0
z · η1(v0) +wv1

z · η1(v1) (3)

where

η0(v0) = 1 η0(v1) = 1 η0(z) = 1 (4)

η1(v0) = (x− v0) ·N η1(v1) = κ(x− v1) ·N η0(z) = (z− z) ·N

= −1
3

= 2 · 2
3

= 0 (5)



Construction of CFE Basis Functions in 1D

v0 = 0 v1 = 1z = 1
3

N

System of equations:[
1 1
− 1

3
4
3

] [
wv0

z
wv1

z

]
=

[
1
0

]
(2)

⇒
[
wv0

z
wv1

z

]
=

[ 4
5
1
5

]
=

[
0.8
0.2

]
(3)



Construction of CFE Basis Functions in 1D

1 10.8 0 0 0.2



1D CFE Basis Functions on Grid Level 0
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These CFE basis functions
4 form partition of unity

4 are nodal

4 are piecewise affine

are positive

have the same support as standard affine basis functions

satisfy the kink condition exactly
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What to do Better

v0

v2
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N
T

H

We require our scheme to correctly extrapolate any piecewise
affine function with appropriate kink: (Taylor expansion at z)

E =

{
u : x 7→

{
κb(x− z) ·N + c(x− z) · T + d x ∈ Ω−
κb(x− z) ·N + c(x− z) · T + d x ∈ Ω+

}
(4)

with b, c, d ∈ R.

⇒ dim E = 3⇒ two constraining nodes are insufficient!
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What to do Better

v0

v2

z

v1

v3

N
T

H

Basis of E :

η0(x) = 1 (4)

η1(x) = (x− z) · T (5)

η2(x) =

{
κ(x− z) ·N x ∈ Ω−
κ(x− z) ·N x ∈ Ω+

(6)
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Modified-Support Basis Functions

Evaluate basis function ηi at nodes vj, z:

η0(v0) = 1 η0(v1) = 1 η0(v2) = 1 η0(v3) = 1 η0(z) = 1

η1(v0) =
−1
3

η1(v1) =
−1
3

η1(v2) =
2
3

η1(v3) =
2
3

η1(z) = 0

η2(v0) =
−2
3

η2(v1) =
2
3

η2(v2) =
−2
3

η2(v3) =
2
3

η2(z) = 0

So our two systems of equations are: 1 1 1
−1
3

−1
3

2
3

−2
3

2
3

−2
3

wv0
z

wv1
z

wv2
z

 =

1
0
0

 ⇒

wv0
z

wv1
z

wv2
z

 =

 1
6
1
2
1
3


 1 1 1
−1
3

2
3

2
3

2
3

−2
3

2
3

wv1
z

wv2
z

wv3
z

 =

1
0
0

 ⇒

wv1
z

wv2
z

wv3
z

 =

 2
3
1
2
−1
6





Modified-Support Basis Functions

Evaluate basis function ηi at nodes vj, z:

η0(v0) = 1 η0(v1) = 1 η0(v2) = 1 η0(v3) = 1 η0(z) = 1

η1(v0) =
−1
3

η1(v1) =
−1
3

η1(v2) =
2
3

η1(v3) =
2
3

η1(z) = 0

η2(v0) =
−2
3

η2(v1) =
2
3

η2(v2) =
−2
3

η2(v3) =
2
3

η2(z) = 0

So our two systems of equations are: 1 1 1
−1
3

−1
3

2
3

−2
3

2
3

−2
3

wv0
z

wv1
z

wv2
z

 =

1
0
0

 ⇒

wv0
z

wv1
z

wv2
z

 =

 1
6
1
2
1
3


 1 1 1
−1
3

2
3

2
3

2
3

−2
3

2
3

wv1
z

wv2
z

wv3
z

 =

1
0
0

 ⇒

wv1
z

wv2
z

wv3
z

 =

 2
3
1
2
−1
6





Modified-Support Basis Functions

On the triangles ∆(v0, v1, v2) and ∆(v1, v2, v3), we have

wv0
z =

1
6

wv1
z =

1
2

wv2
z =

1
3

wv3
z = n/a,

wv0
z = n/a wv1

z =
2
3

wv2
z =

1
2

wv3
z =

−1
6

each scheme by itself allows correct extrapolation

any convex combination allows correct extrapolation

easiest convex combination is arithmetic mean:

wv0
z =

1
12

wv1
z =

7
12

wv2
z =

5
12

wv3
z =

−1
12

any convex combination generally better??
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Modified-Support Basis Functions

v0

v2

z

v1

v3

N
T

H

Again construct CFE basis functions as weighted sum of virtual
basis functions.

v0,1,2,3 constrain z, thus support of v0 and v3 is now bigger

kink ratio is not satisfied along edge H for the basis functions
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Modified-Support Basis Functions

v0

v2

v1

v3

z

z̃

v4

For z̃ = virtual node on edge [v0, v1], w
v2
z̃ turns out to be zero

(support does not grow downwards).

Magenta lines are 3
4 , 1

2 , 1
4 isolines of CFE basis function.



Modified-Support Basis Functions

v3v2

v0

z

v1

Magenta lines are 3
4 , 1

2 , 1
4 , 0 isolines of CFE basis function.



Normals for Non-Planar Interfaces

In case of non-planar interface, use per-triangle normal.

May encounter numerical problems in solution of 4× 4 systems in
3D: omit unreliable tetrahedra.
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Properties of CFE Basis Functions

4 nodality

4 partition of unity

4 piecewise affine

8 may have negative values

8 may have bigger support standard affine basis functions

8 basis functions do not satisfy kink condition
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Approximation Tests

Compute L∞, L2, H1 differences between analytically given
function and CFE interpolation

‖e‖L∞ =“ max
Ω

”|e|

‖e‖L2 =

√∫
Ω

e2 dx

‖e‖H1 =

√∫
Ω

e2 dx + ∑
i

∫
Ω
(∂ie)2 dx

for decreasing grid spacing h.



Approximation Tests: Expected Results

Expected orders of convergence:

L∞: 2

L2: 2

in contrast to standard Affine and Multilinear Finite Elements
(ignoring kink):

L∞: 1

L2: 1.5
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Planar Interface and Test Functions

Consider a planar interface (not aligned with coordinate axes) and
an affine function with kink across the interface.

In this case, CFE approximation should be exact.
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L∞ error for CFE
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L2 error for CFE
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Cylindrical Test Function

Consider

made “cylindrically symmetric”.
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Spherical Test Function

Consider again

made spherically symmetric, modulated by

γ(x, y) =
y√

(x− c)2 + (y− c)2

m(x, y, z) = 1− t · γ(x, y) · γ(y, z) · γ(z, x)

for nontrivial tangential derivatives at interface.

We now consider the case c being outside of the computational
domain Ω and R such that the interface is inside Ω.
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for nontrivial tangential derivatives at interface.

We now consider the case c being outside of the computational
domain Ω and R such that the interface is inside Ω.
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L∞ error for CFE
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Multigrid Solvers

key factor in cpu time: solution of systems of equations

multigrid solvers are fast such techniques

iterative scheme with coarse grid corrections

requires coarsening
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Multigrid coarsening

Problem: Determine coarsening weights to write coarsened basis
functions as linear combination of fine basis functions:

ϕCFE
c0

,coarse = ∑
f
wc0

f ϕCFE
f

,fine (4)

Coarsened basis functions should be as similar as possible to those
obtained by construction on the coarse grid.

Necessary condition for coarsened basis functions forming
partition of unity:

∑
c
wc

f0 = 1 (5)
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The NAK Condition

Coarsening should not introduce additional kinks
(No Additional Kink condition):

xf+1 xf+2xf

xc xc+1

wc+1
f+1 1

⇒ need to balance all “relevant” slopes at xf+1.
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Slope Coarsening
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Slope Coarsening
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Slope Coarsening

NAK condition gives one equation per coarsening weight

on coarse grid, only slopes at end points of intervals are
relevant

slopes measured in units of grid spacing on different grids
(standard slopes are always ±1)

linear construction preserves kink representability
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Properties of CFE Basis Functions and Coarsening

4 nodality

4 partition of unity

4 piecewise affine

. . . and properties that are no longer satisfied in 2D/3D:

8 positivity

8 same support as standard affine basis functions

8 same neighbors in the sense of “overlapping support of basis
functions”, thus same sparsity structure of matrices

8 exact representation of kink in basis functions

8 only standard neighbors can jointly constrain virtual node

8 coarsened and coarse basis functions coincide for “simple”
interfaces
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Multigrid Coarsening

Again want coarsened basis functions to be as similar as possible to
those obtained on the fine grid.

Problem:
basis functions have kinks across virtual edges

virtual edges not present on coarse grid

even for simple interfaces, coarsened 6= coarse basis functions

different neighborhoods⇒ need other coarsening scheme
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Relevant Edges for Coarsening

relevant edges

standard and JCV neighbors (jointly constraining virtual node)

needed for coarsening



Example System for Determining Coarsening Weights
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Multigrid Performance

κ = 5, Ω− shown as solid.

Example Problem: One time step (τ = h) of heat diffusion, starting
with noise.

v(3, 3) cycle on grid level 6, coarsening up to grid level 1,
reduction of squared residuum by 10−24.

Standard Coarsening 20 multigrid cycles, final convergence 0.379
NAK coarsening 16 multigrid cycles, final convergence 0.279
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