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Difference to 3D Case

3D vs 2D — what are the differences?

Blood vessels in 3D organs:

I can use “real” data obtained by medical imaging

I arterial and venous tree can “wind around each other”

In contrast, for 2D:

I no real-world data available for pairs of vessel trees

I need to generate appropriate system artificially

I individual segments have codimension 1
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Geometric Structure

I For simplicity: straight line segments & bifurcations
I Method by Schreiner et al. 1994 (for single tree): Constrained

Constructive Optimization (CCO).
I add nodes at random positions one-by-one
I “optimize” connection to existing tree

I extended to pair of trees:
I avoid mutual intersections
I ensure minimum distance (in some sense)
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Flow Velocities

Balance flow velocities to avoid artificial wide-range components.
I Model: vector S ∈ R≈1000

I outflow out of arterial terminal segments
I inflow into venous terminal segments
I both are assumed constant on each segment
I mass conservation at bifurcations and in domain

I pressure p in domain depends on S via PDE

I minimize dissipation of kinetic energy by friction:
E (p) =

∫
Ω∇p · ∇p

I discretize and optimize subject to “nasty” constraints
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Flow velocities and pressure profile
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Advection in Vessel Trees: Overview

I single segments

I � and � bifurcations

I terminal segments

I trees



1D Advection

First consider 1D advection with constant velocity:

∂tu(t, x) + v∂xu(t, x) = f (t, x) (1)

u(t, x) is energy content (energy per length = energy density times
cross section area).
To solve initial-boundary value problem numerically, use ELLAM
(Eulerian-Lagrangian Locally Adjoint Method) by Celia et al.
(1990)
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ELLAM

Obtain weak formulation by integrating over space-time rectangle

Γl

x0 x1 xi
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tk
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Γk

∫ `

0
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tk
(∂t + v · ∂x ) u · w =

∫ `

0

∫ tk+1

tk
f · w (2)

ELLAM: for test functions w constant along characteristic curves.
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ELLAM

Integrate by parts in space and time:∫
Γk+1

u(tk+1, x) · w(tk+1, x) dx −
∫

Γk
u(tk , x) · w(tk , x) dx

+
∫ `

0

∫ tk+1

tk
u(t, x) (−∂t − v · ∂x ) w(t, x)︸ ︷︷ ︸

=0 (ELLAM test function)

dt dx (3)

+ v ·
∫

Γr

u(t, `)w(t, `) dt − v ·
∫

Γl

u(t, 0)w(t, 0) dt

=
∫ `

0

∫ tk+1

tk
f (t, x) · w(t, x) dx dt



Discretization

Basis functions:

I Nodal basis functions: piecewise linear hat functions,

I height = cross section area of segment

I discrete values are proportional to temperature

Test functions:

I At “new” time level: same shape as basis function,

I height = 1 (partition of unity)

I constant along characteristic curves

I roof-shaped in space-time

Restriction for time step: v ≤ 1 grid cell
time step
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ELLAM

which leads to a scheme:
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Basis Functions at Arterial Bifurcations
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Test Functions at Arterial Bifurcations

p

p
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e

e

e

1

1

1

1

1− ρd
1− ρe

θd (1− ρd ) + θe(1− ρe)

ρd
θdρd

wd ,0

wd ,1

wp,n−2

wp,n−1

θd = Ad ·vd
Ap ·vp

, θe = Ae ·ve
Ap ·vp

, θd + θe = 1



Basis Functions at Venous Bifurcations
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Test Functions at Venous Bifurcations
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Corresponding System of Equations

I one “big” system of equations

I block structure

I diagonal blocks almost as before

I coupling between segments =̂ off-diagonal blocks (very few
entries)

I sparse, but no longer banded system (Gaußian elimination not
efficient)

I use conjugate gradient solver (no preconditioning)
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Advection at � bifurcation

movie: discontinuous combination of temperature profiles



Terminal Segments

I Outflow of mass out of arterial terminal segments (and only
these)

I Inflow of mass into venous terminal segments (and only these)



Arterial Terminal Segments

I Constant inflow temperature ⇒ constant temperature
throughout segment

I linear drop-off of temperature content towards end point (3D:
quadratic?)

This is modelled via RHS source term:

∂tu(t, x) + v · ∂xu(t, x) =− v · u(t, x)
`− x

(4)
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Venous Terminal Segments

Venous terminal segments:

I Constant surrounding temperature ⇒ constant temperature
throughout segment

I linear increase of temperature content from end point (3D:
quadratic?)

This is modelled via RHS source term:

∂tu(t, x) + v · ∂xu(t, x) =
A∅v

`
· utissue(t, x) (5)
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I may need to trace back through multiple bifurcations
I computation and keeping track of connectivity structure

becomes arbitrarily complicated

I could treat multifurcations

I could treat curved segments
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Advection: Results
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Coupling to Diffusion Problem

Want to model RF ablation in tissue with blood flowing through
vessels.

Goal: Couple

I heat diffusion (heat conduction) problem

I (RF probe) source in tissue to

I advection problem through vessel systems

with appropriate mutual source terms.



Coupling to Diffusion Problem

Want to model RF ablation in tissue with blood flowing through
vessels.

Goal: Couple

I heat diffusion (heat conduction) problem

I (RF probe) source in tissue to

I advection problem through vessel systems

with appropriate mutual source terms.



Coupling to Diffusion Problem

Want to model RF ablation in tissue with blood flowing through
vessels.

Goal: Couple

I heat diffusion (heat conduction) problem

I (RF probe) source in tissue to

I advection problem through vessel systems

with appropriate mutual source terms.



Coupling to Diffusion Problem

Want to model RF ablation in tissue with blood flowing through
vessels.

Goal: Couple

I heat diffusion (heat conduction) problem

I (RF probe) source in tissue to

I advection problem through vessel systems

with appropriate mutual source terms.



Energy Exchange Vessels ←→ Tissue

How is energy exchanged between vessel systems and surrounding
tissue?

I Non-terminal segments: diffusive heat transfer only.
Attention: 1D ↔ 2D

I Terminal segments: additionally, advective transfer by flow of
mass.
Attention: Accurate treatment difficult!
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Non-Terminal Segments, Energy Flow

I “heat conduction” between vessels and tissue, but:

I vessels have zero thickness

Instead:

I Heat transmittivity κtrans in units of W
K Vol

I heating of tissue by vessel

I locally, satisfy energy conservation

I i. e. negative tissue source = vessel sink



Non-Terminal Segments, Energy Flow

I “heat conduction” between vessels and tissue, but:

I vessels have zero thickness

Instead:

I Heat transmittivity κtrans in units of W
K Vol

I heating of tissue by vessel

I locally, satisfy energy conservation

I i. e. negative tissue source = vessel sink



Non-Terminal Segments, Energy Flow

I “heat conduction” between vessels and tissue, but:

I vessels have zero thickness

Instead:

I Heat transmittivity κtrans in units of W
K Vol

I heating of tissue by vessel

I locally, satisfy energy conservation

I i. e. negative tissue source = vessel sink



Non-Terminal Segments, Energy Flow

I “heat conduction” between vessels and tissue, but:

I vessels have zero thickness

Instead:

I Heat transmittivity κtrans in units of W
K Vol

I heating of tissue by vessel

I locally, satisfy energy conservation

I i. e. negative tissue source = vessel sink



Terminal Segments, Energy Flow

First idea: Mass carries energy, so use source terms proportional to
mass flow

But: constant temperature no steady state.
Better: Microscopic view.

I Outflow out of arteries into tissue: thermal effect if different
temperature

I Inflow into veins out of tissue: no thermal effect on tissue.
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Exchange of Energy, seen by Vessels
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∆



Heat conduction in Tissue

Heat conduction (u(t, x) temperature, κ conductivity):

∂tu(t, x)− κ∆xu(t, x) = f (t, x)

initial values, zero Neumann boundary values.
f on vessel trees (1D line segments), PDE meant in distributional
sense.
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I Finite Elements (piecewise bilinear nodal basis/test functions)

I nicely structured, sparse system of equations (not banded)

I diagonally preconditioned conjugate gradient solver
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Source Terms and Time Stepping

RF probe:

I simple model used here

I can easily be replaced by better model of thermal effects

Time stepping:

I backward Euler timestepping for diffusion

I compute diffusion and advection time steps by turns

I need common time step (so far, advection is the limit)
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Pulses of Inflowing Warm Blood

Artificial problem: Inflowing pulses of warm blood, pulsed flow
velocities.
Different color scales for tissue / vessel temperature.



Pulses of Inflowing Warm Blood

Now place RF probe near arterial vessel.
Same color scale for tissue / vessel up to opacity.



Outlook

I 3D

I more complicated geometric structure

I diffusion within vessels

I advection within tissue

I more detailed model of physical effects (vessel walls,
non-laminar flow within vessels, thermal influence of RF
probe)

I nonlinear dependence of material parameters on temperature,
irreversibility

I finer discretization: higher resolution

I comparison to experimental results
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Summary

2D Vessel Trees
Geometric Structure
Flow Velocities

Advection Problem
Single Segments
ELLAM
Unknowns at Bifurcations
Basis and Test Functions at Bifurcations
Terminal Segments

Coupling to Diffusion Problem
Exchange of Energy
Heat Conduction in Tissue
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