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Medical Background

I liver carcinoma

I minimally invasive treatment: RF ablation

I destroy tumor by heating, preserve surrounding tissue

I heat conduction (diffusion) and blood flow (advection)

I body responds by increasing blood flow
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Modelling: State of the Art

I joint project with MeVis and others

I 3D heat conduction with stationary blood vessels



Our Model Problem

aim:

I develop method for 1D advection through vessels systems

I coupling with heat conduction in surrounding tissue

Model: reduce to 2D

I blood vessels: 1D straight line segments (pipes, ∅-area)

I arteries form binary tree: bifurcations

I same for veins

I advection only within vessel trees, no heat conduction

I diffusion only within tissue, no flow of mass
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Blood Vessels in 3D Liver



Vessel Trees in 2D

I pairs of arterial and venous vessel tree do not appear in nature

I fundamentally different from 3D

I need to generate artificially



Generating Geometric Structure of 2D Vessel Trees

Method originally for 1 binary tree [Schreiner et al.], uniform blood
supply for given domain.

I start with initial tree configuration

I add new terminal nodes one-by-one to each tree in turn

I random position

I find optimal connection

I verify feasibility

I adapt radii
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New Node Added



Generating Pairs of Trees



Flow Velocities for 2D Vessel Trees

I have geometric structure

I need flow velocities 6= f (radius)

Idea for model:

I isotropic, incompressible flow through porous medium

I outflow out of terminal segments: S

I can express pressure p = f (S) (PDE, steady state BVP)

I minimize dissipation of kinetic energy by friction:
E (p) =

∫
Ω ∇p · ∇p
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Blood Flow



Discrete Optimization Problem

Discretize tissue & obtain problem:

h(S) = ATL−1AS · S −→ min!

subject to

S ≥ 0

`a · S = C = `v · S

nonnegativity and inflow = outflow = const.
Typically: tissue has 257× 257 grid cells,

I S ∈ R1024

I A : R1024 → R66049

I L ∈ R66049×66049 (very sparse and nicely structured)
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Optimization Procedure

Quadratic optimization problem, but constraints are nasty.

I initial guess: S0: uniform distribution
I generate sequence Sk+1 = Sk + αkdk :

I dk feasible descent direction:
I i. e. Sk + εdk feasible and
I h(Sk + εdk ) < h(Sk ) for small ε
I αk “good” step size

Problems:

I convergence is slow (need many steps)

I each step: many function evaluations

I ATL−1AS · S is expensive to compute
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Cascadic Approach

Expensive part of AtL−1A is L−1, complexity depends on tissue
discretization.
Idea:

I solve on coarse grid

I take as initial guess for finer grid

I iterate

Compare to Multigrid.
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Resulting Velocities and Pressure



Transport Through the Vessel System

Now model transport through vessel system.
First consider single 1D segment.
Analytically, advection equation

∂tu(t, x) + v∂xu(t, x) = f (t, x)

is solved by tracking back along characteristics.
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Advection on 1D segment

ELLAM [Celia et al.] scheme couples

I four values on old time level to

I three values on new time level



System of Equations
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Where to Place Nodal Unknowns at Bifurcations?

?
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I two separate segments

I explicitely compute outflow, use as inflow

Bad b/c artificially decoupled & computation necessary
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Where to Place Nodal Unknowns at Arterial Bifurcations



Block System for Arterial Bifurcations

M�
BLOCK =



∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0
Mp

∗1 ∗2 ∗2
∗3

Ma
d

∗3
Ma

e



Me,�
BLOCK =



∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0
Me

p

∗4 ∗5 ∗6 ∗6
∗7 ∗8

∗9 Ma,e
d

∗7 ∗8
∗9 Ma,e

e





Where to Place Nodal Unknowns at Venous Bifurcations



Block System for Venous Bifurcations

M�
BLOCK =



∗1 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗2 ∗0 ∗0 ∗0 ∗0 ∗2
Me

p

M`
d

∗3

M`
e

∗3



Me,�
BLOCK =



∗5 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗0 ∗6 ∗4 ∗0 ∗0 ∗0 ∗6 ∗4
∗8 Mp ∗7 ∗7

M`,e
d

∗9

M`,e
e

∗9





Different Nature of the Trees

Arterial tree:

I one inflow

I temperature split continuously

I many outflows

Venous tree:

I many inflows

I discontinuous averageing of temperature

I one outflow



Terminal Segments

I Physically: outflow along terminal segments (not at terminal
nodes)

I energy content (temperature content) drops off to zero

I constant temperature & apparent cross section area drops off
to zero

Arterial terminal segments:

I Sink term depends on vessel temperature

I independent of surrounding tissue

Venous terminal segments:

I Source term depends on temperature of surrounding tissue

I independent of vessel temperature
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Advection on Trees

Video clip shows temperature contents:



Coupling to Heat Conduction: Exchange of Energy

Problem: Advection in tissue not modelled.

I Outflowing/Inflowing mass carries energy.

I Source / sink for tissue?

No. Steady state not modelled correctly. Instead:

I root and intermediate segments: exchange of temperature
satisfying energy conservation

I arterial terminal segments: heating / cooling of tissue only if
temperature difference

I venous terminal segments: no cooling effect on tissue
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Exchange of Energy as Seen by Vessels



Exchange of Energy as Seen by Tissue

∆



Heat conduction in Tissue

Heat conduction (u(t, x) temperature, κ conductivity):

∂tu(t, x)− κ∆xu(t, x) = f (t, x)

zero initial values, zero Neumann boundary values.
f on vessel trees (1D line segments) only, PDE meant in
distributional sense.



Pulses of Inflowing Warm Blood

Artificial problem: Inflowing pulses of warm blood, pulsed flow
velocities.
Different color scales for tissue / vessel temperature.



Pulses of Inflowing Warm Blood

Now place RF probe near arterial vessel.
Same color scale for tissue / vessel up to opacity.
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