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Review: Computational Complexity

∆u = uxx + uyy + uzz = frhs, m1,2,3 grid.

• Näıve Gauß–elimination: O(m3,6,9) & numerical difficulties

• Banded matrix: O(m1,4,7)

• Spectral methods (if possible):

O(m1,2,3 log m)

• Conjugate gradient (to fixed tolerance: O(m) iterations):

O(m2,3,4)
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Basic Setup

• Grids G0, G1, . . . , GM on a domain Ω, mesh sizes h0 > · · · > hM.

• Problem:

LU(x) = F(x) in Ω, ΛU(x) = Φ(x) on ∂Ω (1)

• Approximation on kth grid Gk:

LkUk(x) = Fk(x), x ∈ Gk, ΛkUk(x) = Φk(x) x ∈ ∂Ω (2)

• want to solve on GM
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• Solving the problem ⇔ reducing the residuals Vk:
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solution Uk = uk + Vk, satisfy residual eq.n (4)
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Basic Idea of Multigrid

• Solving the problem ⇔ reducing the residuals Vk:

f k = Fk − LkUk, ϕk = Φk −ΛkUk (3)

solution Uk = uk + Vk, satisfy residual eq.n (4)

LkVk = f k, ΛkVk = Φk (5)

• Both function and residuals consist of different frequencies

• Function resolved on coarser grid will lose high frequencies (Nyquist)
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Can reduce different frequencies on different grids:

• Frequency high relative to grid if in upper half of representable frequencies

• Methods like Gauß-Seidel reduce high frequency components of residual within
few iterations (=: sweeps)

• Then continue on coarser grid where “absolutely lower” frequencies are relatively
high

• Iterate until on G0, use cheap non–sweeping method

Code: decay of high frequencies
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An Example

Problem LU = Uxx + cUyy = F with “suitable BC”.

• Standard second order discretization:

LkUk =
Uk

α+1,β − 2Uk
αβ + Uk

α−1,β

h2
k

+ c ·
Uk

α,β+1 − 2Uk
αβ + Uk

α,β−1

h2
k

= Fk
α,β (6)

Uk
α,β = Uk(αhk, βhk), Fk

α,β = Fk(αhk, βhk), α, β ∈ N
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k

+ c
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(
uα,β+1 − 2ūαβ + ūα,β−1
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• For Poisson equation (c = 1), get µ̄ = 0.5, which is good: Three relaxation
sweeps reduce the error by one order of magnitude.

• For degenerate case c � 1 or c ≈ 0, µ̄ approaches 1, Gauß-Seidel is not optimal.
Can use other relaxation schemes instead.

• Do not need to use relaxation parameter

ω 6= 1 : u � u + ω(ū− u) (14)

in general cannot do significantly better than ω = 1.
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C-Cycle

go to finer level

n

n

n

y

y

y

converged?

END

on finest level?

relaxation sweep

convergence slow?

on coarsest level?

START with initial guess

n

y

go to coarser level

proceed with residual

and zero initial guess
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C-Cycle

• What is a “good” initial guess?

• When have we “converged”?

• When is convergence “slow”?

• How to go to coarser level (averageing)?

• How to go to finer level (interpolation)?
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Initial guess

• Can start with arbitrary initial guess, e. g. zero
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Initial guess

• Can start with arbitrary initial guess, e. g. zero

• Better: smooth residuals, e. g. high order interpolation of solution on GM−1.

• Try to preserve smoothness in the beginning (later)
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Convergence and Slow Convergence

Criterion when more improvement per work by continuing on finer grid, assuming
that error components |θ| ≈ π

2 dominate:

‖residual on current grid‖
‖residual on finer grid‖

≤ δ (15)
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Convergence and Slow Convergence

Criterion when more improvement per work by continuing on finer grid, assuming
that error components |θ| ≈ π

2 dominate:

‖residual on current grid‖
‖residual on finer grid‖

≤ δ (15)

Criterion when convergence has slowed down for high frequencies:

‖residual‖
‖residual one step before‖

≥ η =
1 + 3µ̄

4
(16)

for an appropriate grid and Ik−1
k -weighting. µ̄ is the max. smoothing factor for

frequencies for which coarse grid correction is not effective.

• If η 6≡ const on Ω, choose maximal η
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• If η varies over several orders of magnitude (“should not happen [for] proper
relaxation scheme”), treat subdomains separately (later)

• Can also use trial & error for δ on moderately coarse grid and η, both are
typically independent of h, Ω, F.

• Overall multigrid convergence insensitive to η, very insensitive to δ.

• E. g. Poisson + Gauß–Seidel:

? δ = 0.219, η = 0.625
? for smaller η similarly good results
? for η ≤ 0.95 maximal double work
? for 0.0001 ≤ δ ≤ 0.7 maximal double work
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Coarse-to-Fine Interpolation

• Order of (polynomial) interpolation ≥ order of differential equation

• Initially can use even higher order as long as residuals are still smooth

• Later higher order is not more efficient (not significantly better, more computa-
tional work)

• FE: Structure determines how to interpolate/coarsen.
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Fine-to-Coarse Weighting

General scheme:

Ik−1
k rk(x) = ∑ ρνrk(x + νh) (17)

• Often trivial weighting (injection) is good enough (no computation necessary):
ρν = δ0,ν.

• For difference equations with rapidly varying coefficients ρν = 2−d−|ν|∞ for
|ν|∞ ≤ 1.
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Memory requirements

Assume n = m1,23 unknowns.

• Maybe store Fm and difference scheme

• Need 2n values for Um

• Less values on coarser grids, all together

2n ·
(

1 + 2−1d + 2−2d + . . .
)

≤ 2n · 2d

2d − 1
(18)

Code: C-Cycle
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FAS

Full Approximation Storage mode of C-Cycle

• Above: store vk designed to correct finer level uk+1.

• FAS: store full current approximation uk = Ik+1
k uk+1 + vk.
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Properties of FAS

• Basic feature uk = Ik
mum: coarse-grid solution coincides with fine grid solution

• Works equally well for linear problems

• Can also handle nonlinear problems

• More suitable for composite grids (later)

• Get good estimate for truncation error, same approximation behavior as for
solution
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Nonuniform Grids

• Idea: adaptive grids, openended sequence G0, . . . , Gm, non-coextensive

? finer grids on increasingly smaller subdomains: adaption where needed
? coarser grids on increasingly wider domains: capture unbounded regions

• Easy for rectangular, topologically rectangular and “non-complicated” grids
because ∃ canonical way of coarsening and refining

• For “complicated” grids, only refining is straightforward, @ canonical way of
coarsening

• Also need to keep track of coordinates of grid points and adjacency
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“Complicated” Grids

?
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Composite Grids

For bounded Ω, use the following idea:

• Hierarchy of uniform rectangular grids

• Coarsest grid covers entire domain

• Finer grids introduced where necessary

? they will cover non-connected subdomains.
? need appropriate memory management for efficient computation
? good because calculations can be done independent of other subdomains

(parallel computing)
? easy calculations on uniform grids

Example for adaptive grid refinement:
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Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

• Could use local coordinates near ∂Ω

• Segmental refinement: work on one subdomain at a time

? saves memory
? allows parallel computing
? also works for connected regions: take some overlap. High frequency

components (being reduced in few sweeps) cannot be seen far away.
? required memory can be O(n log n).
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Images from: T. Preußer, M. Rumpf: An Adaptive Finite Element Method for Large Scale Image Processing. Journal

of Visual Comm. and Image Repres., 11, pp. 183-195, 2000.

The original data set does not contain jpeg artefacts, unlike the image in the pdf version of the article.

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

• Could use local coordinates near ∂Ω

• Segmental refinement: work on one subdomain at a time

? saves memory
? allows parallel computing
? also works for connected regions: take some overlap. High frequency

components (being reduced in few sweeps) cannot be seen far away.
? required memory can be O(n log n).
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Computational work

Mainly for relaxation sweeps, transfers between grids typically ≤ 20 . . . 30%.

Work unit: Amount of computation for sweep on the finest grid

Work to reduce error on finest grid to order of truncation error:

WM ≤
(
1 + ρ̂d + ρ̂2d + . . .

)
p log ρ̂

log
◦
µ

(19)

≤ p log ρ̂

(1− ρ̂d)2 log µ̄
(20)

where µ̄ = max
ρ̂≤|θ|≤π

µ(θ) maximal smoothing factor,
◦
µ= µ̄(1−ρ̂d) multigrid

convergence factor, p order of interpolation, d dimension ρ̂ mesh size ratio.
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Optimization of h, p

In general, can improve by reducing the mesh size h and by increasing the order of
approximation p. View this as an optimization problem:

Minimize error (estimator) for a given computational work or vice versa, usually
− log E ∼ W.
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Optimization of h, p

In general, can improve by reducing the mesh size h and by increasing the order of
approximation p. View this as an optimization problem:

Minimize error (estimator) for a given computational work or vice versa, usually
− log E ∼ W.

E =
∫

Ω
G(x)τ(x) dx (21)

where

• τ(x) = |LU(x)− LhU(x)| truncation error

• G(x) appropriate weighting, e. g. G(x) = [ dist(x, ∂Ω)]m/2−l for mth order
elliptic problem, order l local approximation of U
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W =
∫

Ω

W(p(x))
h(x)d dx (22)

where

• p(x) local order of approximation

• W(p) computational work for pth order approximation

• h(x)−d local # grid points per volume (density)
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W =
∫

Ω

W(p(x))
h(x)d dx (22)

where

• p(x) local order of approximation

• W(p) computational work for pth order approximation

• h(x)−d local # grid points per volume (density)

Restrictions on h and p such as uniformity of grids, p ∈ N, 2N.
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