
1

Mulitgrid Methods

Achi Brandt:

Multi-Level Adaptive Solutions to
Boundary Value Problems

UW NARC, Spring Quarter 2004
April 29/May 6, 2004

Lars O. Schwen

mailto:loschwen@math.washington.edu

2

Outline

• Review: Computational Complexity

• The Idea of Multigrid

• Algorithm & Properties

• Grid Management

• The Author & Some History of MG

3

Review: Computational Complexity

∆u = uxx = frhs, m1 grid.

3

Review: Computational Complexity

∆u = uxx + uyy = frhs, m1,2 grid.

3

Review: Computational Complexity

∆u = uxx + uyy + uzz = frhs, m1,2,3 grid.

3

Review: Computational Complexity

∆u = uxx + uyy + uzz = frhs, m1,2,3 grid.

• Näıve Gauß–elimination: O(m3,6,9) & numerical difficulties

3

Review: Computational Complexity

∆u = uxx + uyy + uzz = frhs, m1,2,3 grid.

• Näıve Gauß–elimination: O(m3,6,9) & numerical difficulties

• Banded matrix: O(m1,4,7)

3

Review: Computational Complexity

∆u = uxx + uyy + uzz = frhs, m1,2,3 grid.

• Näıve Gauß–elimination: O(m3,6,9) & numerical difficulties

• Banded matrix: O(m1,4,7)

• Spectral methods (if possible):

O(m1,2,3 log m)

3

Review: Computational Complexity

∆u = uxx + uyy + uzz = frhs, m1,2,3 grid.

• Näıve Gauß–elimination: O(m3,6,9) & numerical difficulties

• Banded matrix: O(m1,4,7)

• Spectral methods (if possible):

O(m1,2,3 log m)

• Conjugate gradient (to fixed tolerance: O(m) iterations):

O(m2,3,4)

4

Basic Setup

• Grids G0, G1, . . . , GM on a domain Ω, mesh sizes h0 > · · · > hM.

4

Basic Setup

• Grids G0, G1, . . . , GM on a domain Ω, mesh sizes h0 > · · · > hM.

• Problem:

LU(x) = F(x) in Ω, ΛU(x) = Φ(x) on ∂Ω

4

Basic Setup

• Grids G0, G1, . . . , GM on a domain Ω, mesh sizes h0 > · · · > hM.

• Problem:

LU(x) = F(x) in Ω, ΛU(x) = Φ(x) on ∂Ω (1)

• Approximation on kth grid Gk:

LkUk(x) = Fk(x), x ∈ Gk, ΛkUk(x) = Φk(x) x ∈ ∂Ω

4

Basic Setup

• Grids G0, G1, . . . , GM on a domain Ω, mesh sizes h0 > · · · > hM.

• Problem:

LU(x) = F(x) in Ω, ΛU(x) = Φ(x) on ∂Ω (1)

• Approximation on kth grid Gk:

LkUk(x) = Fk(x), x ∈ Gk, ΛkUk(x) = Φk(x) x ∈ ∂Ω (2)

• want to solve on GM

5

Basic Idea of Multigrid

• Solving the problem ⇔ reducing the residuals Vk:

f k = Fk − LkUk, ϕk = Φk −ΛkUk (3)

solution Uk = uk + Vk, satisfy residual eq.n (4)

LkVk = f k, ΛkVk = Φk

5

Basic Idea of Multigrid

• Solving the problem ⇔ reducing the residuals Vk:

f k = Fk − LkUk, ϕk = Φk −ΛkUk (3)

solution Uk = uk + Vk, satisfy residual eq.n (4)

LkVk = f k, ΛkVk = Φk (5)

• Both function and residuals consist of different frequencies

5

Basic Idea of Multigrid

• Solving the problem ⇔ reducing the residuals Vk:

f k = Fk − LkUk, ϕk = Φk −ΛkUk (3)

solution Uk = uk + Vk, satisfy residual eq.n (4)

LkVk = f k, ΛkVk = Φk (5)

• Both function and residuals consist of different frequencies

• Function resolved on coarser grid will lose high frequencies (Nyquist)

6

Can reduce different frequencies on different grids:

• Frequency high relative to grid if in upper half of representable frequencies

6

Can reduce different frequencies on different grids:

• Frequency high relative to grid if in upper half of representable frequencies

• Methods like Gauß-Seidel reduce high frequency components of residual within
few iterations

6

Can reduce different frequencies on different grids:

• Frequency high relative to grid if in upper half of representable frequencies

• Methods like Gauß-Seidel reduce high frequency components of residual within
few iterations (=: sweeps)

6

Can reduce different frequencies on different grids:

• Frequency high relative to grid if in upper half of representable frequencies

• Methods like Gauß-Seidel reduce high frequency components of residual within
few iterations (=: sweeps)

• Then continue on coarser grid where “absolutely lower” frequencies are relatively
high

6

Can reduce different frequencies on different grids:

• Frequency high relative to grid if in upper half of representable frequencies

• Methods like Gauß-Seidel reduce high frequency components of residual within
few iterations (=: sweeps)

• Then continue on coarser grid where “absolutely lower” frequencies are relatively
high

• Iterate until on G0, use cheap non–sweeping method

Code: decay of high frequencies

7

An Example

Problem LU = Uxx + cUyy = F with “suitable BC”.

• Standard second order discretization:

LkUk =
Uk

α+1,β − 2Uk
αβ + Uk

α−1,β

h2
k

+ c ·
Uk

α,β+1 − 2Uk
αβ + Uk

α,β−1

h2
k

= Fk
α,β (6)

Uk
α,β = Uk(αhk, βhk), Fk

α,β = Fk(αhk, βhk), α, β ∈ N

7

An Example

Problem LU = Uxx + cUyy = F with “suitable BC”.

• Standard second order discretization:

LkUk =
Uk

α+1,β − 2Uk
αβ + Uk

α−1,β

h2
k

+ c ·
Uk

α,β+1 − 2Uk
αβ + Uk

α,β−1

h2
k

= Fk
α,β (6)

Uk
α,β = Uk(αhk, βhk), Fk

α,β = Fk(αhk, βhk), α, β ∈ N (7)

• Use Gauß-Seidel lexicographic Gk relaxation sweep

7

An Example

Problem LU = Uxx + cUyy = F with “suitable BC”.

• Standard second order discretization:

LkUk =
Uk

α+1,β − 2Uk
αβ + Uk

α−1,β

h2
k

+ c ·
Uk

α,β+1 − 2Uk
αβ + Uk

α,β−1

h2
k

= Fk
α,β (6)

Uk
α,β = Uk(αhk, βhk), Fk

α,β = Fk(αhk, βhk), α, β ∈ N (7)

• Use Gauß-Seidel lexicographic Gk relaxation sweep,

replacing uα,β � ūα,β satisfying

uα+1,β − 2ūαβ + ūα−1,β

h2
k

+ c
uα,β+1 − 2ūαβ + ūα,β−1

h2
k

= Fk
α,β

7

An Example

Problem LU = Uxx + cUyy = F with “suitable BC”.

• Standard second order discretization:

LkUk =
Uk

α+1,β − 2Uk
αβ + Uk

α−1,β

h2
k

+ c ·
Uk

α,β+1 − 2Uk
αβ + Uk

α,β−1

h2
k

= Fk
α,β (6)

Uk
α,β = Uk(αhk, βhk), Fk

α,β = Fk(αhk, βhk), α, β ∈ N (7)

• Use Gauß-Seidel lexicographic Gk relaxation sweep,

replacing uα,β � ūα,β satisfying

uα+1,β − 2ūαβ + ūα−1,β

h2
k

+ c
uα,β+1 − 2ūαβ + ūα,β−1

h2
k

= Fk
α,β (8)

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

• Asymptotic rate of convergence is µ = 1−O(h2
k), but we don’t want to reduce

residual — just smooth it out.

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

• Asymptotic rate of convergence is µ = 1−O(h2
k), but we don’t want to reduce

residual — just smooth it out.

• Consider θ = (θ1, θ2) Fourier component:

vα,β = Aθei(θ1α+θ2β) , v̄α,β = Āθei(θ1α+θ2β)

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

• Asymptotic rate of convergence is µ = 1−O(h2
k), but we don’t want to reduce

residual — just smooth it out.

• Consider θ = (θ1, θ2) Fourier component:

vα,β = Aθei(θ1α+θ2β) , v̄α,β = Āθei(θ1α+θ2β) (9)

uα+1,β − 2ūαβ + ūα−1,β + c
(
uα,β+1 − 2ūαβ + ūα,β−1

)
= 0

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

• Asymptotic rate of convergence is µ = 1−O(h2
k), but we don’t want to reduce

residual — just smooth it out.

• Consider θ = (θ1, θ2) Fourier component:

vα,β = Aθei(θ1α+θ2β) , v̄α,β = Āθei(θ1α+θ2β) (9)

uα+1,β − 2ūαβ + ūα−1,β + c
(
uα,β+1 − 2ūαβ + ūα,β−1

)
= 0 (10)(

eiθ1 + ceiθ2
)

Aθ +
(
eiθ1 + ceiθ2 − 2− 2c

)
Āθ = 0

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

• Asymptotic rate of convergence is µ = 1−O(h2
k), but we don’t want to reduce

residual — just smooth it out.

• Consider θ = (θ1, θ2) Fourier component:

vα,β = Aθei(θ1α+θ2β) , v̄α,β = Āθei(θ1α+θ2β) (9)

uα+1,β − 2ūαβ + ūα−1,β + c
(
uα,β+1 − 2ūαβ + ūα,β−1

)
= 0 (10)(

eiθ1 + ceiθ2
)

Aθ +
(
eiθ1 + ceiθ2 − 2− 2c

)
Āθ = 0 (11)

µ(θ) =
∣∣∣ Āθ

Aθ

∣∣∣ =
∣∣∣ eiθ1+ceiθ2

2+2c−eiθ1−ceiθ2

∣∣∣

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

• Asymptotic rate of convergence is µ = 1−O(h2
k), but we don’t want to reduce

residual — just smooth it out.

• Consider θ = (θ1, θ2) Fourier component:

vα,β = Aθei(θ1α+θ2β) , v̄α,β = Āθei(θ1α+θ2β) (9)

uα+1,β − 2ūαβ + ūα−1,β + c
(
uα,β+1 − 2ūαβ + ūα,β−1

)
= 0 (10)(

eiθ1 + ceiθ2
)

Aθ +
(
eiθ1 + ceiθ2 − 2− 2c

)
Āθ = 0 (11)

µ(θ) =
∣∣∣ Āθ

Aθ

∣∣∣ =
∣∣∣ eiθ1+ceiθ2

2+2c−eiθ1−ceiθ2

∣∣∣ (12)

Smoothing factor:

µ̄ = max
0.5π≤|θ|≤π

µ(θ)

8

• Convergence factor µ = ‖v̄‖/‖v‖ where v = Uk − u, v̄ = Uk − ū and ‖ • ‖ is
a suitable norm.

• Asymptotic rate of convergence is µ = 1−O(h2
k), but we don’t want to reduce

residual — just smooth it out.

• Consider θ = (θ1, θ2) Fourier component:

vα,β = Aθei(θ1α+θ2β) , v̄α,β = Āθei(θ1α+θ2β) (9)

uα+1,β − 2ūαβ + ūα−1,β + c
(
uα,β+1 − 2ūαβ + ūα,β−1

)
= 0 (10)(

eiθ1 + ceiθ2
)

Aθ +
(
eiθ1 + ceiθ2 − 2− 2c

)
Āθ = 0 (11)

µ(θ) =
∣∣∣ Āθ

Aθ

∣∣∣ =
∣∣∣ eiθ1+ceiθ2

2+2c−eiθ1−ceiθ2

∣∣∣ (12)

Smoothing factor:

µ̄ = max
0.5π≤|θ|≤π

µ(θ) (13)

9

• For Poisson equation (c = 1), get µ̄ = 0.5, which is good: Three relaxation
sweeps reduce the error by one order of magnitude.

9

• For Poisson equation (c = 1), get µ̄ = 0.5, which is good: Three relaxation
sweeps reduce the error by one order of magnitude.

• For degenerate case c � 1 or c ≈ 0, µ̄ approaches 1, Gauß-Seidel is not optimal.
Can use other relaxation schemes instead.

9

• For Poisson equation (c = 1), get µ̄ = 0.5, which is good: Three relaxation
sweeps reduce the error by one order of magnitude.

• For degenerate case c � 1 or c ≈ 0, µ̄ approaches 1, Gauß-Seidel is not optimal.
Can use other relaxation schemes instead.

• Do not need to use relaxation parameter

ω 6= 1 : u � u + ω(ū− u) (14)

in general cannot do significantly better than ω = 1.

10

C-Cycle

go to finer level

n

n

n

y

y

y

converged?

END

on finest level?

relaxation sweep

convergence slow?

on coarsest level?

START with initial guess

n

y

go to coarser level

proceed with residual

and zero initial guess

11

C-Cycle

• What is a “good” initial guess?

11

C-Cycle

• What is a “good” initial guess?

• When have we “converged”?

11

C-Cycle

• What is a “good” initial guess?

• When have we “converged”?

• When is convergence “slow”?

11

C-Cycle

• What is a “good” initial guess?

• When have we “converged”?

• When is convergence “slow”?

• How to go to coarser level (averageing)?

11

C-Cycle

• What is a “good” initial guess?

• When have we “converged”?

• When is convergence “slow”?

• How to go to coarser level (averageing)?

• How to go to finer level (interpolation)?

12

Initial guess

• Can start with arbitrary initial guess, e. g. zero

12

Initial guess

• Can start with arbitrary initial guess, e. g. zero

• Better: smooth residuals, e. g. high order interpolation of solution on GM−1.

• Try to preserve smoothness in the beginning (later)

13

Convergence and Slow Convergence

Criterion when more improvement per work by continuing on finer grid, assuming
that error components |θ| ≈ π

2 dominate:

‖residual on current grid‖
‖residual on finer grid‖

≤ δ (15)

13

Convergence and Slow Convergence

Criterion when more improvement per work by continuing on finer grid, assuming
that error components |θ| ≈ π

2 dominate:

‖residual on current grid‖
‖residual on finer grid‖

≤ δ (15)

Criterion when convergence has slowed down for high frequencies:

‖residual‖
‖residual one step before‖

≥ η =
1 + 3µ̄

4
(16)

for an appropriate grid and Ik−1
k -weighting. µ̄ is the max. smoothing factor for

frequencies for which coarse grid correction is not effective.

• If η 6≡ const on Ω, choose maximal η

14

• If η varies over several orders of magnitude (“should not happen [for] proper
relaxation scheme”), treat subdomains separately (later)

14

• If η varies over several orders of magnitude (“should not happen [for] proper
relaxation scheme”), treat subdomains separately (later)

• Can also use trial & error for δ on moderately coarse grid and η, both are
typically independent of h, Ω, F.

• Overall multigrid convergence insensitive to η, very insensitive to δ.

14

• If η varies over several orders of magnitude (“should not happen [for] proper
relaxation scheme”), treat subdomains separately (later)

• Can also use trial & error for δ on moderately coarse grid and η, both are
typically independent of h, Ω, F.

• Overall multigrid convergence insensitive to η, very insensitive to δ.

• E. g. Poisson + Gauß–Seidel:

? δ = 0.219, η = 0.625
? for smaller η similarly good results
? for η ≤ 0.95 maximal double work
? for 0.0001 ≤ δ ≤ 0.7 maximal double work

15

Coarse-to-Fine Interpolation

• Order of (polynomial) interpolation ≥ order of differential equation

15

Coarse-to-Fine Interpolation

• Order of (polynomial) interpolation ≥ order of differential equation

• Initially can use even higher order as long as residuals are still smooth

• Later higher order is not more efficient (not significantly better, more computa-
tional work)

15

Coarse-to-Fine Interpolation

• Order of (polynomial) interpolation ≥ order of differential equation

• Initially can use even higher order as long as residuals are still smooth

• Later higher order is not more efficient (not significantly better, more computa-
tional work)

• FE: Structure determines how to interpolate/coarsen.

16

Fine-to-Coarse Weighting

General scheme:

Ik−1
k rk(x) = ∑ ρνrk(x + νh) (17)

16

Fine-to-Coarse Weighting

General scheme:

Ik−1
k rk(x) = ∑ ρνrk(x + νh) (17)

• Often trivial weighting (injection) is good enough (no computation necessary):
ρν = δ0,ν.

16

Fine-to-Coarse Weighting

General scheme:

Ik−1
k rk(x) = ∑ ρνrk(x + νh) (17)

• Often trivial weighting (injection) is good enough (no computation necessary):
ρν = δ0,ν.

• For difference equations with rapidly varying coefficients ρν = 2−d−|ν|∞ for
|ν|∞ ≤ 1.

17

Memory requirements

Assume n = m1,23 unknowns.

• Maybe store Fm and difference scheme

17

Memory requirements

Assume n = m1,23 unknowns.

• Maybe store Fm and difference scheme

• Need 2n values for Um

• Less values on coarser grids,

17

Memory requirements

Assume n = m1,23 unknowns.

• Maybe store Fm and difference scheme

• Need 2n values for Um

• Less values on coarser grids, all together

2n ·
(

1 + 2−1d + 2−2d + . . .
)

≤ 2n · 2d

2d − 1
(18)

Code: C-Cycle

18

FAS

Full Approximation Storage mode of C-Cycle

• Above: store vk designed to correct finer level uk+1.

• FAS: store full current approximation uk = Ik+1
k uk+1 + vk.

19

Properties of FAS

• Basic feature uk = Ik
mum: coarse-grid solution coincides with fine grid solution

19

Properties of FAS

• Basic feature uk = Ik
mum: coarse-grid solution coincides with fine grid solution

• Works equally well for linear problems

• Can also handle nonlinear problems

19

Properties of FAS

• Basic feature uk = Ik
mum: coarse-grid solution coincides with fine grid solution

• Works equally well for linear problems

• Can also handle nonlinear problems

• More suitable for composite grids (later)

19

Properties of FAS

• Basic feature uk = Ik
mum: coarse-grid solution coincides with fine grid solution

• Works equally well for linear problems

• Can also handle nonlinear problems

• More suitable for composite grids (later)

• Get good estimate for truncation error, same approximation behavior as for
solution

20

Nonuniform Grids

• Idea: adaptive grids, openended sequence G0, . . . , Gm, non-coextensive

? finer grids on increasingly smaller subdomains: adaption where needed
? coarser grids on increasingly wider domains: capture unbounded regions

20

Nonuniform Grids

• Idea: adaptive grids, openended sequence G0, . . . , Gm, non-coextensive

? finer grids on increasingly smaller subdomains: adaption where needed
? coarser grids on increasingly wider domains: capture unbounded regions

• Easy for rectangular, topologically rectangular and “non-complicated” grids
because ∃ canonical way of coarsening and refining

20

Nonuniform Grids

• Idea: adaptive grids, openended sequence G0, . . . , Gm, non-coextensive

? finer grids on increasingly smaller subdomains: adaption where needed
? coarser grids on increasingly wider domains: capture unbounded regions

• Easy for rectangular, topologically rectangular and “non-complicated” grids
because ∃ canonical way of coarsening and refining

• For “complicated” grids, only refining is straightforward, @ canonical way of
coarsening

20

Nonuniform Grids

• Idea: adaptive grids, openended sequence G0, . . . , Gm, non-coextensive

? finer grids on increasingly smaller subdomains: adaption where needed
? coarser grids on increasingly wider domains: capture unbounded regions

• Easy for rectangular, topologically rectangular and “non-complicated” grids
because ∃ canonical way of coarsening and refining

• For “complicated” grids, only refining is straightforward, @ canonical way of
coarsening

• Also need to keep track of coordinates of grid points and adjacency

21

Uniform Grids

21

Uniform Grids

21

Uniform Grids

22

“Non-complicated” Grids

22

“Non-complicated” Grids

22

“Non-complicated” Grids

23

“Complicated” Grids

23

“Complicated” Grids

23

“Complicated” Grids

?

24

Composite Grids

For bounded Ω, use the following idea:

• Hierarchy of uniform rectangular grids

24

Composite Grids

For bounded Ω, use the following idea:

• Hierarchy of uniform rectangular grids

• Coarsest grid covers entire domain

• Finer grids introduced where necessary

24

Composite Grids

For bounded Ω, use the following idea:

• Hierarchy of uniform rectangular grids

• Coarsest grid covers entire domain

• Finer grids introduced where necessary

? they will cover non-connected subdomains.
? need appropriate memory management for efficient computation
? good because calculations can be done independent of other subdomains

(parallel computing)
? easy calculations on uniform grids

Example for adaptive grid refinement:

25

26

27

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

27

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

27

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

• Could use local coordinates near ∂Ω

27

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

• Could use local coordinates near ∂Ω

• Segmental refinement: work on one subdomain at a time

27

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

• Could use local coordinates near ∂Ω

• Segmental refinement: work on one subdomain at a time

? saves memory
? allows parallel computing
? also works for connected regions: take some overlap.

? required memory can be O(n log n).

27

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

• Could use local coordinates near ∂Ω

• Segmental refinement: work on one subdomain at a time

? saves memory
? allows parallel computing
? also works for connected regions: take some overlap. High frequency

components (being reduced in few sweeps) cannot be seen far away.
? required memory can be O(n log n).

27
Images from: T. Preußer, M. Rumpf: An Adaptive Finite Element Method for Large Scale Image Processing. Journal

of Visual Comm. and Image Repres., 11, pp. 183-195, 2000.

The original data set does not contain jpeg artefacts, unlike the image in the pdf version of the article.

Possible generalizations

• Start with piecewise uniform grid & refine uniformely; maybe coarsen

• For FE: just need lookup tables for each different basis element

• Could use local coordinates near ∂Ω

• Segmental refinement: work on one subdomain at a time

? saves memory
? allows parallel computing
? also works for connected regions: take some overlap. High frequency

components (being reduced in few sweeps) cannot be seen far away.
? required memory can be O(n log n).

28

Computational work

Mainly for relaxation sweeps, transfers between grids typically ≤ 20 . . . 30%.

28

Computational work

Mainly for relaxation sweeps, transfers between grids typically ≤ 20 . . . 30%.

Work unit: Amount of computation for sweep on the finest grid

28

Computational work

Mainly for relaxation sweeps, transfers between grids typically ≤ 20 . . . 30%.

Work unit: Amount of computation for sweep on the finest grid

Work to reduce error on finest grid to order of truncation error:

WM ≤
(
1 + ρ̂d + ρ̂2d + . . .

)
p log ρ̂

log
◦
µ

(19)

≤ p log ρ̂

(1− ρ̂d)2 log µ̄
(20)

where µ̄ = max
ρ̂≤|θ|≤π

µ(θ) maximal smoothing factor,
◦
µ= µ̄(1−ρ̂d) multigrid

convergence factor, p order of interpolation, d dimension ρ̂ mesh size ratio.

29

Optimization of h, p

In general, can improve by reducing the mesh size h and by increasing the order of
approximation p. View this as an optimization problem:

Minimize error (estimator) for a given computational work or vice versa, usually
− log E ∼ W.

29

Optimization of h, p

In general, can improve by reducing the mesh size h and by increasing the order of
approximation p. View this as an optimization problem:

Minimize error (estimator) for a given computational work or vice versa, usually
− log E ∼ W.

E =
∫

Ω
G(x)τ(x) dx (21)

where

• τ(x) = |LU(x)− LhU(x)| truncation error

• G(x) appropriate weighting, e. g. G(x) = [dist(x, ∂Ω)]m/2−l for mth order
elliptic problem, order l local approximation of U

30

W =
∫

Ω

W(p(x))
h(x)d dx (22)

where

• p(x) local order of approximation

• W(p) computational work for pth order approximation

• h(x)−d local # grid points per volume (density)

30

W =
∫

Ω

W(p(x))
h(x)d dx (22)

where

• p(x) local order of approximation

• W(p) computational work for pth order approximation

• h(x)−d local # grid points per volume (density)

Restrictions on h and p such as uniformity of grids, p ∈ N, 2N.

31

The Author: Achi Brandt

• Born 1938 in Givat-Brener, Israel

31

The Author: Achi Brandt

• Born 1938 in Givat-Brener, Israel

• Student at Hebrew University, Jerusalem, 1963 MSc about aspects of random
walks

• 1965 PhD from Weizmann Institute of Science, thesis about numerical methods
in hydrodynamics and magnetohydrodynamics

32

• 1972 Associate Professor in Applied Math at the Weizmann Institute, ’73-’75
Head of Pure Math Department, ’78 - ’82 Head of Applied Math Department

• Since 1993 Director of the Carl F. Gauß Minerva Center for Scientific Computing
at the Weizmann Institute

32

• 1972 Associate Professor in Applied Math at the Weizmann Institute, ’73-’75
Head of Pure Math Department, ’78 - ’82 Head of Applied Math Department

• Since 1993 Director of the Carl F. Gauß Minerva Center for Scientific Computing
at the Weizmann Institute

• Worked at The Courant Institute of Mathematical Sciences, New York University,
IBM T. J. Watson Research Center, NASA Langley Research Center, Institute
for Computational Studies at CSU, Fort Collins, Colorado University at Denver

• Member of Israel Union of Mathematics, SIAM

• Recieved Landau Prize in Mathematics, Rothschild Prize in Mathematics

33

History of Multigrid Methods

• Relaxation came up in the 1940s

• Methods involving 2 grids in the late 1950s

33

History of Multigrid Methods

• Relaxation came up in the 1940s

• Methods involving 2 grids in the late 1950s

• Multigrid introduced by the Russian mathematician Fedorenko in 1964

? few rigorous estimates for Poisson problem, astronomic constants
? Bakhalov (another Russian) generalized in 1966, obtaining even bigger

constants

33

History of Multigrid Methods

• Relaxation came up in the 1940s

• Methods involving 2 grids in the late 1950s

• Multigrid introduced by the Russian mathematician Fedorenko in 1964

? few rigorous estimates for Poisson problem, astronomic constants
? Bakhalov (another Russian) generalized in 1966, obtaining even bigger

constants

• Brandt cooperated with others at the Weizmann institute, NASA Langley
Research Center, IBM T. J. Watson Research Center working on multigrids

33

History of Multigrid Methods

• Relaxation came up in the 1940s

• Methods involving 2 grids in the late 1950s

• Multigrid introduced by the Russian mathematician Fedorenko in 1964

? few rigorous estimates for Poisson problem, astronomic constants
? Bakhalov (another Russian) generalized in 1966, obtaining even bigger

constants

• Brandt cooperated with others at the Weizmann institute, NASA Langley
Research Center, IBM T. J. Watson Research Center working on multigrids

• This article has been citet 991 times (source: Science Citation Index)

34

0

50

100

150

200

250

300

1975 1980 1985 1990 1995 2000 2005

citations within 5 (3) years

35

References

• Achi Brandt: Multi-Level Adaptive Solutions to Boundary Value Problems, Math
Comp 31, 138, 1977, pp. 333-390

• Randall J. LeVeque: Finite Difference Methods for Differential Equations, Lecture
Notes UW, 2004

• W. Briggs, V. E. Hanson, S. McCormick: A Multigrid Tutorial, Second Edition,
siam, Philadelphia 2001

• http://www.wisdom.weizmann.ac.il/˜achi

36

.

