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ABSTRACT

DeepMedic, an open source software library based on a multi-channel multi-resolution 3D convolutional neural
network, has recently been made publicly available for brain lesion segmentations. It has already been shown
that segmentation tasks on MRI data of patients having traumatic brain injuries, brain tumors, and ischemic
stroke lesions can be performed very well. In this paper we describe how it can efficiently be used for the
purpose of detecting and segmenting white matter hyperintensity lesions. We examined if it can be applied to
single-channel routine 2D FLAIR data. For evaluation, we annotated 197 datasets with different numbers and
sizes of white matter hyperintensity lesions. Our experiments have shown that substantial results with respect
to the segmentation quality can be achieved. Compared to the original parametrization of the DeepMedic neural
network, the timings for training can be drastically reduced if adjusting corresponding training parameters, while
at the same time the Dice coefficients remain nearly unchanged. This enables for performing a whole training
process within a single day utilizing a NVIDIA GeForce GTX 580 graphics board which makes this library also
very interesting for research purposes on low-end GPU hardware.
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1. INTRODUCTION

The detection and quantification of white matter lesions (WML), e.g., as an expression of the severity of cerebral
micro-angiopathy, are of great clinical and scientific importance. An early identification and systematic mea-
surement is the prerequisite for effective prevention and further investigation of the influence of microangiopathy
on cognition, dementia risk and stroke risk in observation and therapy studies. The segmentation of WML is
the basis for this.

However, as of now there is no established reliable method for clinical use. The heterogeneous, often inho-
mogeneous signal behavior of WML as well as the interference with other structural changes make automatic
segmentation approaches difficult. At the same time, a method for automatic segmentation should provide
comparable and reproducible results independent of the scanner, field strength and data quality.

By comparison, non-monitored methods can be used without the use of a training database. Segmentation
is carried out here rather by modeling of previous knowledge about position, size, intensity distribution, etc.
of lesions. The methods are based, for example, on multi-spectral thresholding,! fuzzy clustering®? or fuzzy
interference systems.* A further approach is to classify healthy tissue, and to define lesions as outliers.’® A
detailed overview of published approaches can be found in.”

Recently, first approaches based on the concepts of deep learning® have been proposed. First publications on
the classification of WML 1 also show promising results. DeepMedic!! is an efficient multiscale 3D convolutional
neural network (CNN) for the segmentation of brain lesions. It consists of two pathways with 11 layers each,
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Figure 1. Examples of excluded data. From left to right: imaging artifact, over-segmentation, under-segmentation.

in which the input image is processed in parallel with two different resolutions. The quality of these procedures
depends on the amount and quality of the available training data as well as on the data to be segmented.

The aim of this paper is to explore the usefulness of DeepMedic as a basis for development of software
applications for automated segmentation using clinical routine MRI data. For this study, data from the clinical
routine has been used where no extra time was available, neither for high-resolution 3D FLAIR data, nor for
multi-modal MRI acquisitions which can improve the segmentation quality.

2. METHODS

For this work, we used a datasets consisting of 2D FLAIR images acquired within the -IKNOW study'? and the
RETIS study.'® Acquisition details are given in,'? '3 Tab. 1 summarizes some basic numbers.

2.1 Annotation of MRI data

The presence and extent of hyperintensities of the white matter can qualitatively be determined in the context
of neuroradiological findings. Such a qualitative assessment, however, sets a systematic analysis, particularly in
the comparison between different persons and in the course of time, narrow methodological boundaries and is,
moreover, naturally subjective.

The use of standardized assessment scales such as the Fazekas and Schmidt scale'* allows for a standardized
visual assessment and estimation of the extent of the lesions in the white matter.

Thus, we have developed a semi-automatic method for creating reference annotations. For the determination
of the WML, we individually adapted the brightness and contrast of the FLAIR data from the acute dataset of
each patient so that the contrast between healthy brain tissue and leukoaraiosis was visually optimal. Afterwards,
the area of the WML was manually defined with a certain safety margin. In this marked area, the threshold
value was individually adjusted under visual control, thus ensuring an optimal demarcation of the WML against
the healthy brain tissue. Artifacts and cortex were excluded. If necessary, in a last step, non-plausible voxels
were manually removed from the selection. In the FLAIR sequence, already visible acute stroke lesions were
separated from the WML by comparison with the DWI or ADC map. It is important to note that an individual
threshold has been defined for each patient.

For quality assurance, all lesion masks have been critically examined with regard to anatomical distribution
and have been compared with a visual scoring system (Fazekas and Schmidt scale); a ”good” comparability was
established.



| Study1 (104 patients)

Study2 (93 patients)

Resolution (mm?) 0.4 x 0.4 x 6.5 0.7 x 0.7 X 6.6
Overall 104 93
SelectedDatal 87 74
SelectedData2 70 47

Table 1. During/after the annotations, cases with strong artifacts or missing images were excluded (number of remaining
data sets: SelectedDatal). In a second refinement step datasets with only moderate annotations were removed (number
of remaining data: SelectedData2).

Afterwards, low quality datasets have been removed as shown in Table 1. Additionally, a second selection on
this cleaned data has been performed by removing datasets with still ambiguous segmentations.

2.2 Preprocessing

DeepMedic uses ROI masks to limit the learning process and the prediction to the respective relevant image area.
Therefore, brain masks are created for all patients. DeepMedic also expects uniform voxel sizes for all records
used (both training and test data) so that resampling was applied to all records (Gaussian nearest neighbor filter

with resulting voxel size is 0.449 x 0.449 x 6.5mm?). The image intensities are normalized so that they have
zero-mean and unit variance.
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CNN name Nrrain| Nsegm| E | SE| Number of feature | Number of feature
maps in L1 maps in L2
Original 62 1000 | 35 | 20 | [30,30,40,40,40,40,50,50] | [30,30,40,40,40,40,50,50]
Original(masked) 62 1000 | 35 | 20 | [30,30,40,40,40,40,50,50] | [30,30,40,40,40,40,50,50]
Orig.(w/o masks) 62 1000 | 35 | 20 | [30,30,40,40,40,40,50,50] | [30,30,40,40,40,40,50,50]
Smaller 25 1000 | 20*| 15*| [20,20,30,30,30,30,40,40]*| [30,30,40,40,40,40,50,50]
Smaller2 10 1000 | 15*| 10*| [20,20,30,30,30,30,40,40]*| [20,20,30,30,30,30,40,40]*
LessFMs 62 1000 | 35 | 10*| [20,20,30,30,30,30,40,40]*| [15,15,25,25,25,25,35,35]*
LessData(masked) 10 1000 | 35 | 20 | [30,30,40,40,40,40,50,50] | [30,30,40,40,40,40,50,50]
LessLoaded(masked)| 62 500* 35 | 20 | [30,30,40,40,40,40,50,50] | [30,30,40,40,40,40,50,50]
CNN3(masked) 46 750* 30*| 20 | [30,30,40,40,40,40,50,50] | [20,20,30,30,30,30,40,40]*

Table 2. CNN parameters. The name ’Original’ refers to the original DeepMedic architecture. The asterisk(*) marks
parameters that are different from the original. The extension ’(masked)’ in the CNN name means that the masked image
was used during training. ’(w/o masks)’ means that the CNN has been trained completely without specifying ROI masks.

2.3 Neural networks and Training

In the following, the CNN proposed by Kamnitsas!! is referred as 'Original’. Different derived configurations of
this CNN are given in Table 2.

The training consists of several iterations which are called "epochs” (E) which are divided into ”sub-epochs”
(SE). The number of training samples is denoated as Npy.qin. The CNN is trained batchwise. For this purpose,
a certain number Ngegm of segments are extracted from the training data. The given DeepMedic CNN consists
of eight convolutional layers in case of the normal pathway (L1) and consists of two fully connected layers and
a classification layer in case of the low-resolution pathway (L2). The number of feature maps (FM) in the
convolutional layers has been varied.

During the first training cycles, the brain masks were used. For predictions (validation / tests), however,
the total image data seemed to be taken into account since the predicted segmentation was partially outside the
given ROI. The brain masks were previously used for normalization and passed to the algorithm for extracting
training segments, but are obviously not applied to the records during the entire algorithm.



CNN name Per Epoch Training incl. | Application on | DSC
validation patient datasets
(n = 25)

Original 1 h 18 min 50 h 36 min 0 h 54 min 0.6341
Original(masked) 1 h 18 min 45 h 33 min 0 h 54 min 0.6492
Orig.(w/o masks) 1 h 18 min 54 h 13 min 1 h 36 min 0.6027
Smaller 0 h 49 min 17 h 42 min 0 h 40 min 0.5750
Smaller2 0 h 30 min 08 h 02 min 0 h 37 min 0.5420
LessFMs 0 h 57 min 36 h 04 min 0 h 37 min 0.6169
LessData(masked) 1 h 18 min 50 h 18 min 0 h 54 min 0.5982
LessLoaded(masked) | 0 h 49 min 33 h 30 min 0 h 54 min 0.6094
CNN3(masked) 0 h 42 min 21 h 01 min 0 h 52 min 0.6437

Table 3. Performance of the CNNs configured as shown in Table 2. The Dice Similarity Coefficient (DSC) was used for
validation.

3. RESULTS
3.1 Speed vs quality

Since the training with the original CNN takes very long, the first goal was to reduce the computing time while
keeping the quality of the results as good as possible. The different CNNs were compared on 25 patients from
the Studyl. Initially, only patients from this dataset were used for the training and the validation. As selection,
SelectedDatal was used.

The CNN3 was also trained with data from these 25 patients.
(SelectedData2) was used for testing CNN3, except the training data.

Therefore, all patient data from Studyl

As expected, the adjustments in the CNN architecture, which allow a reduction of the computation time,
result in poorer segmentation results. Nevertheless, the deviations of the DSC values from the DeepMedic original
are below 0.1. The CNN3 even reaches a comparable average DSC while reducing the computation time to less
than half the original.

For applying the trained networks to Study2 datasets, the selection SelectedData2 was used since the qual-
ity of many MRI recordings is significantly worse than in Studyl and there are very strong over- and under-
segmentations. This would lead to highly falsified results in validation. The results for the segmentation on
patients of Study2 datasets are, as expected, significantly worse than for the Studyl datasets used for the train-
ing process. The rules learned from this dataset are obviously not directly transferable to Study2. Relevant
differences could be lower resolution, larger lesions, and deviating imaging parameters. In the case of larger
lesions, there is a tendency to undersegment.

Also, it is noticeable that both the CNN LessData and LessDatal.oaded produce better results on average
than the original network, although less data was used for the training using the same architecture. One reason
for this is might be that less incomplete groundtruth segmentation has been used for learning.

3.2 Impact of annotation quality

Complete coverage of all lesions

As first step, we examined if all areas of increased intensity which point to white matter were correctly segmented
by our technique described in Sec. 2.1. In particular, problems occurred in distinguishing between WML and other
types of lesions or imaging-related artifacts, e.g., at the boundaries of ventricles. After a manual improvement
of those problems, the CNN3 was trained with these improved ground truth masks. As before, 46 patients from
Studyl dataset were used.

For both studies (Studyl and Study2), the average DSC could be slightly increased by the CNN trained with
improved masks, but this improvement is negligibly small especially for the Studyl dataset. As can be seen in
Fig. 3, it is striking that the change in the DSC varies greatly among different patients as expected because
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Figure 2. False positives by improvedSeg. From left to right: reference, originalSeg, improvedSeg.

different adjustments were made depending on the quality of the original segmentation mask. The relatively
high deviations in the DSC among many patients in the Study2 dataset show how important the reference
segmentations are in the assessment of the results and how strongly the assessment can be influenced by them.

On closer examination of the predicted segmentations, it is also becomes clear that the proportion of false-
positive segmentations was increased by the adapted groundtruth masks. Particularly locations with increased
intensity in areas of the gray matter and brightness caused by noise are segmented by the CNN, see Fig. 2.

Reference Reference DSC
(Training) (Validation)

Study1 (SelectedDatal, w/o training data) | originalSeg originalSeg 0.5756
originalSeg improvedSeg 0.5847
improvedSeg improvedSeg 0.5910
improvedSeg2 improvedSeg2 0.6051

Study?2 (SelectedData2) originalSeg originalSeg 0.4309
originalSeg improvedSeg 0.4884
improvedSeg improvedSeg 0.5060
improvedSeg?2 improvedSeg?2 0.5137

Table 4. Overview of the results of CNN3. originalSeg” refers to the original manual segmentation.

Remove all artifacts

As a consequence, we examined a second improvement: particular care was taken to limit the segmentation to
relevant lesions and thus to discard very small areas of increased intensity. This should reduce the segmentation
of noise and facilitate the learning of specific characteristics of distinct lesions. In addition, attempts were
made to segment lesions in the larger connected regions in order to obtain this property more strongly in the
predictions. In addition, the segmentation at the borders of ventricles was also improved. The test segmentations
and validations were performed again on the new adapted ground truth masks. An overview of the dice scores
when using CNN3 is shown in Tab. 4.

3.3 Different acquisition protocols

The CNN3 was trained on the previously used 46 patients from the Studyl dataset and on additional 20 patients
from the Study2 dataset. The improved GroundTruth masks ”improvedSeg2” were used for training and valida-
tion. When validating the Studyl data, it is noticeable that both the DSC values and the visual inspection of
the segmentation results have not changed significantly, see Tab. 5.



Test data ‘ Training DSC

Studyl (SelectedDatal, without training data) | ImprovedSeg2, only Studyl 0.6051
ImprovedSeg2, Studyl and Study?2 0.5961
Study?2 (SelectedData2, without training data) | ImprovedSeg2, only Studyl 0.5008
ImprovedSeg2, Studyl and Study2 0.5525

Table 5. DSC comparison between the training with only one and both datasets (Studyl and Study?2).

On the other hand, the results for the Study2 patients were significantly improved, see Tab. 5 and Fig. 4.
The average DSC has risen significantly compared to the changes resulting from the previous adjustments. In
addition, a clear improvement can also be perceived visually, see Fig. 6.

Further results are shown in Fig. 3 and Fig. 4 where the ground truth segmentation has been further improved
and where both studies are used for training. A omparison between the CNN3 and the original DeepMedic
architecture is given in Fig. 6.

Test data ‘ CNN ‘ DSC

Studyl (SelectedDatal, without training data) | CNN3 0.5962
Original DeepMedic 0.6197

Study?2 (SelectedData2, without training data) | CNN3 0.5525
Original DeepMedic 0.5645

Table 6. DSC comparison between the CNN3 and the original DeepMedic architecture.

4. DISCUSSION AND CONCLUSIONS

We explored the usage of DeepMedic on single-modality, low-quality FLAIR data. In addition, we have examined
how to modify the neural networks so that the training process can be done on low-end GPUs with nearly the
same quality.

The heterogeneous, frequently inhomogeneous signal behavior of hyperintensities of the white matter as well
as the interference with other structural changes makes automatic segmentation approaches more difficult. At
the same time, a method for automatic segmentation should work independently of the model, of the scanner
used, the field strength and largely independent of the quality of the images used and provide comparable and
reproducible results. To the best of our knowledge, such an approach is not yet available. However, DeepMedic
is an excellent library to achieve results of substantial quality,® also on low-budget GPU hardware. Our results
have shown that this can also be achieved when having only clinical routine 2D FLAIR data available and not,
as demonstrated in several other publications, only by utilizing multi-modal high quality MRI data. One open
problem that has not been addressed by DeepMedic until now is possibility of differentiating between two or
more different pathological manifestations like stroke lesions and WML. This issue, however, seems to be solvable
by a subsequent classification task or by using a u-shaped residual network (uResNet) architecture.'®
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Figure 3. Modification of the DSC values by the use of the improved ground-truth masks during the training of the CNN3.
The patients from Study2 / SelectedData2 are considered.
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Figure 4. Datasets from both studies are used for training. The plot shows the change of the DSC values for the patients
used for validation from the Study?2 dataset (positive values mean an improvement by using both datasets).

Figure 5. Results on Study 2. From left to right: reference annotation, Original, CNN3.



Figure 6. Left: MRI scan without segmentation, center: result of CNN3 trained on Studyl and improvedSeg2, result of
CNNS3 trained on both datasets and improvedSeg2.

Figure 7. Results on Studyl. Upper row, left to right: reference annotation, Original, LessFMs. Bottom, left to right:
LessData, LessLoaded, Smaller2.



