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Abstract

Diffusion Tensor Imaging (DTI) and fiber tractography are established methods to reconstruct major white matter tracts in
the human brain in-vivo. Particularly in the context of neurosurgical procedures, reliable information about the course of
fiber bundles is important to minimize postoperative deficits while maximizing the tumor resection volume. Since routinely
used deterministic streamline tractography approaches often underestimate the spatial extent of white matter tracts, a
novel approach to improve fiber segmentation is presented here, considering clinical time constraints. Therefore, fiber
tracking visualization is enhanced with statistical information from multiple tracking applications to determine uncertainty
in reconstruction based on clinical DTI data. After initial deterministic fiber tracking and centerline calculation, new seed
regions are generated along the result’s midline. Tracking is applied to all new seed regions afterwards, varying in number
and applied offset. The number of fibers passing each voxel is computed to model different levels of fiber bundle
membership. Experimental results using an artificial data set of an anatomical software phantom are presented, using the
Dice Similarity Coefficient (DSC) as a measure of segmentation quality. Different parameter combinations were classified to
be superior to others providing significantly improved results with DSCs of 81.02%64.12%, 81.32%64.22% and
80.99%63.81% for different levels of added noise in comparison to the deterministic fiber tracking procedure using the
two-ROI approach with average DSCs of 65.08%65.31%, 64.73%66.02% and 65.91%66.42%. Whole brain tractography
based on the seed volume generated by the calculated seeds delivers average DSCs of 67.12%60.86%, 75.10%60.28% and
72.91%60.15%, original whole brain tractography delivers DSCs of 67.16%, 75.03% and 75.54%, using initial ROIs as
combined include regions, which is clearly improved by the repeated fiber tractography method.
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Introduction

Multimodal navigation guidance is a routine tool in neurosur-

gical operating theaters to achieve best possible resection of the

lesion with minimum postoperative morbidity, displaying outlines

of the segmented objects in the microscope heads-up display. In

addition to mere anatomical magnetic resonance imaging (MRI)

data, the multimodality concept includes the visualization of

functional brain areas with cortical sites (functional MRI,

magneto-encephalography), fiber bundles (diffusion tensor imag-

ing (DTI) based fiber tractography) or metabolic data (single

photon emission computed tomography, positron emission

tomography, magnetic resonance spectroscopy imaging). To date,

the concept of maximum resection whilst preserving neurological

functions is not only self-evident for benign lesions, but also for

malignancies such as gliomas, as the most common primary brain

tumors [1]. Whereas the correlation of their extent of resection

(EOR) and patient outcome has been a long-term point of

discussion, recent literature favors also radical EOR in surgery of

low-grade and high-grade gliomas [1–5]. Another major addition

to multimodal navigation is intraoperative MRI (iMRI) followed

by an update of the navigation to compensate for the effects of

brain shift (brain deformations due to e.g. loss of cerebrospinal

fluid, tumor resection, edema) [6–9]. It was demonstrated that

iMRI combined with navigation guidance and an intraoperative

update of image data leads to higher rates of EOR and gross total

resection rates in glioma surgery with low postoperative morbidity

[10–13].

In order to maximize the extent of tumor volume resection

whilst preserving neurological functions, additional image data sets

can be used to display more information on the tumor or risk

structures such as vessels, subcortical neuronal pathways or

eloquent cortical areas. In this paper, we focus on the reconstruc-

tion and visualization of subcortical fiber bundles, delivered by

DTI and fiber tractography.
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DTI has first been described by Basser et al. [14] in 1994. Upon

this finding, DTI based fiber tractography became a popular non-

invasive method to estimate the normal course, location, and

extent of white matter tracts, as well as displacement or

interruption around a tumor or widening of fiber bundles due to

edema or tumor in vivo [15–18].

DTI relies on diffusion weighted imaging (DWI). The funda-

mental principle of DWI relies on measuring diffusion properties

of water molecules in the human brain. Brownian motion of water

molecules is random without any preferential direction of

movement, which changes in the presence of structures in the

area of interest. The generally disordered diffusion process

becomes directional in regions with strongly aligned microstruc-

ture, e.g. cell membranes, and the myelin sheath. Thereby, the

diffusion process of water molecules is strengthened along the

aligned microstructural architecture and hindered in the trans-

verse direction. For each DWI acquisition, a diffusion gradient is

applied allowing the measurement of the diffusion process within a

specified direction [19].

DTI uses 2nd order tensors to describe the diffusion properties

within each voxel. Since the positive and symmetric diffusion

tensor requires six coefficients, at least six diffusion weighted

Figure 1. Workflow of the repeated fiber tracking approach.
doi:10.1371/journal.pone.0063082.g001
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images using non-collinear diffusion gradients in addition to one

non-diffusion weighted image (b0-image) are indispensable.

According to the Stejskal-Tanner equation, the coefficients of

the tensors can be determined; the principal eigenvector encodes

the dominant diffusion direction, corresponding dominant tissue

structure and the mean longitudinal direction of axons in major

white matter tracts for each volume element [20,21].

Until now, several DTI based algorithms have been proposed

for reconstructing neuronal pathways in the human brain in vivo

[22–26], generally separated in deterministic and probabilistic

methods.

Initial approaches concentrated on deterministic methods [27–

32]. Based on the assumption that the principle eigenvector, given

by the 2nd order tensor, is correlated with the main direction of the

underlying fiber structure [33,34], a path is iteratively calculated,

starting at a defined seed point and following the direction parallel

to the principle eigenvector at each voxel.

The most commonly implemented method in neuronavigation

systems is the so-called tensor deflection algorithm (TEND) [35].

In contrast to traditional streamline tractography based on

propagating the streamline in the major eigenvector field, TEND

uses the whole diffusion tensor to deflect the incoming tract vector

[36] towards the major eigenvector direction with limited

deflection curvature, resulting in smoother tracts.

Besides these common techniques, many fiber tractography

algorithms have been developed. Merhof et al. presented a

connectivity based approach using the A* algorithm for path

finding between two selected regions, which was particularly

evaluated in case of the language pathways [37–39]. Additional

global tractography approaches were implemented considering the

spatial neighborhood for estimation of fiber orientations [40–45].

As opposed to deterministic approaches delivering only one

fiber reconstruction per seed point, probabilistic algorithms

[44,46–48] consider multiple pathways per seed point and per

point along the reconstructed pathways. One probabilistic fiber

tracking method has been developed by Kreher et al. [25]. For

each voxel ascribed to the fiber bundle, a streamline is propagated

through the tensor field. The trajectories are chosen depending on

random experiments, in contrast to the trajectory calculation

within the deterministic approach. Another probabilistic method is

presented by Friman et al. [26] using a Bayesian approach for

fiber tracking. On a global level, the probabilities of a connection

between two areas in the brain are estimated. On a local level, the

probability density functions concerning the fiber orientation are

estimated using the Bayes’ theorem.

For clinical purposes, specific white matter tracts have to be

selected. After streamline calculation, followed by reducing the

resulting fiber sets using include and exclude regions [49],

representative 3D objects are calculated as wrapping hulls. The

wrapping process is commonly based on a stepwise calculation of

bounding curves, such as convex hulls along the set of streamlines

[50]. However, the surface is fully dependent on the tracking

results and heavily influenced by tracking errors [51]. One

example of surface rendering by wrapping is described by Ding

et al. [52]. Another approach, directly calculating a 3D volume,

has been presented by Merhof et al. [53]. Starting from a

predefined seed region, the volume is spread out directionally,

taking the shape of the local tensor into account and determining

the direction of the growing process.

Alternatively, segmentation algorithms can be used, dividable

into different levels. A first class of segmentation algorithms uses

scalar anisotropy measures derived from the tensor data and

applies routinely used image segmentation methods [54], losing

directional information on the underlying structure. More

advanced techniques are based on clustering approaches. On a

first level, fiber tracts are reconstructed. Subsequent segmentation

is performed using pairwise similarity measures, e.g. the Euclidean

distance, the ratio of the length for corresponding portions of the

fiber to their overall length [55] or by applying normalized cuts

after reducing the fibers to a feature vector [56]. Since these

depend on previous tractography, a third group of segmentation

approaches works directly on the tensor data, without extracting

fiber pathways. Using metrics on symmetric positive semi-definite

tensor fields, such as the Euclidean metric trace between two

tensors [57,58] or the normalized tensor scalar product [59],

traditional segmentation approaches such as spectral clustering

[57,60] or level set methods [58,59] are applied. Since these

methods concentrate more on the segmentation of discrete tensors,

rather than on continuous fiber pathways, more sophisticated

metrics such as log-Euclidean metric [61], information theoretic

metrics [62] or affine-invariant metrics [63–65] are used. Locally

constrained region based methods [66,67] use the minimization of

an energy function in a probabilistic framework.

Although fiber bundle directions are often well estimated with

commonly used fiber tracking techniques, the actual size of the

fiber bundles is frequently underestimated, which causes severe

problems when fiber bundle reconstruction is integrated into

neurosurgical applications [68]. This underestimation of the

spatial extent and its tendency to concentrate on the tract center,

rather than on the tract borders, can be explained in part with

partial volume effects. Partial volume effects cause a decrease in

Table 1. Parameterization of independent variables.

Variable Value (Group)

Image noise level (NOISE) 0(A), 1(B), 2(C)

Number of seed regions (SEEDS) 2(A), 3(B), 5(C), 9(D), 17(E), 33(F), 65(G), 129(H)

Seed region scaling (SCALING) [mm] 0(A), 1(B), 2(C), 3(D), 4(E), 5(F)

Fiber bundle membership (FBM) [%] 10(A),20(B), 30(C), 40(D),50(E),60(F),70(G),80(H),90(I),100(J)

doi:10.1371/journal.pone.0063082.t001

Table 2. Dice Similarity Coefficient (DSC) according to group
variable NOISE.

Noise level Mean DSC
[%]

Std. Dev.
[%]

Min. DSC
[%]

Max. DSC
[%]

0 (A) 69.27 10.56 41.35 85.44

1 (B) 68.93 10.96 40.50 85.68

2 (C) 68.82 10.75 41.55 85.66

doi:10.1371/journal.pone.0063082.t002
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anisotropy due to averaging the diffusion and thereby disturb the

main diffusion direction at the white matter tract borders [69].

To visualize the uncertainty of fiber orientation in combination

with data of trajectories, boot strapping methods were introduced

[70,71] using multiple repetitions (e.g. nine) of image acquisition,

generating a large amount of data sets (e.g. 5000) and finally

applying tractography to all of them, providing visitation maps for

estimation of confidence and uncertainty. Newer methods, such as

wild bootstrapping [72,73], overcome the prolonged acquisition

times for bootstrapping by generating tensor volumes on the basis

of tensor fitting and computing the residuals to the fitted model,

with similar tractography results like fiber tractography for

conventional bootstrapping [74]. Another approach, following a

similar idea, has been presented by Hahn et al. [69]. In contrast to

repetitions of image acquisition, complex Gaussian noise is added,

delivering several data sets with variational noise. Fiber tracking is

then performed for all data sets and streamlines are accumulated.

Thereby, a widening of aggregation of fibers can be observed with

the ability to use the same short image acquisition procedure as for

conventional analysis in clinical routine. A new method using a

combination of probabilistic fiber tractography and tensor

clustering has been suggested by Barbieri et al. [75]. The

tractogram provided by probabilistic fiber tractography is used

as initial fuzzy segmentation mask, which is iteratively updated

according to connectivity information from probabilistic fiber

tracking and local tensor clustering. Thereby, the approach

incorporates the ability to capture fibers deviating from the main

tensor diffusion direction (probabilistic fiber tracking) and the

more precise delimitation of bundle borders (tensor clustering).

Due to the still remaining lack of certainty of reliability of the

reconstruction methods and the underestimation of fiber bundles

using currently approved fiber tractography techniques, in clinical

routine the wrapping ‘‘hulls’’ are extended, resulting in so called

safety hulls. Nimsky et al. [76] showed that a distance of 5 mm

between the boundary of the originally reconstructed object and

second surface (hull) is sufficient for the corticospinal tract to avoid

neurological deficits. In case of bad data quality or vicinity of

tumors and edema, it may be necessary to enlarge this distance.

In this paper, we focus on the reconstruction of large fiber

bundles, such as the corticospinal tract. As already shown by

Hattingen et al. [77], the deterministic streamline tracking

approach significantly depends on the localization of seed regions.

Whereas in their study seed region placement in the primary

motor areas yields more successful tracking results even with

decreased FA values, seed region placement in the cerebral

peduncle creates a higher number of fibers tending to be of higher

quality. Due to this dependence on seed region placement and to

overcome the influence of manual seed region placement, we

combine the results of several fiber tracking reconstructions for

final reconstruction and visualization. In contrast to the previously

described methods based on physically or artificially enlarged data

sets, the proposed method deals with a systematic re-seeding for

fiber tractography and fiber bundle representation. This approach

will be evaluated using software phantoms with modeled

anatomical fiber tracts to have ground truth data for comparison.

Materials and Methods

Data Acquisition
To evaluate the new approach on seed region independent fiber

tract visualization, a software phantom based on the BrainWeb

project [78] was used with given ground truth to compare against,

modeling part of the left corticospinal tract [79,80]. To model

different qualities of data, the phantom data set was additionally

Table 3. Dice Similarity Coefficient (DSC) according to group variable SCALING.

Value of SCALING Mean DSC [%] Std. Dev. [%] Min. DSC [%] Max. DSC [%]

0 (A) 67.41 10.57 42.33 82.03

1 (B) 70.13 10.75 44.14 85.00

2 (C) 70.32 10.57 45.19 85.68

3 (D) 69.65 10.47 45.42 85.50

4 (E) 68.76 10.69 45.50 84.76

5 (F) 67.77 11.23 40.50 84.18

doi:10.1371/journal.pone.0063082.t003

Table 4. Dice Similarity Coefficient (DSC) according to group variable SEEDS.

Value of SEEDS (Group) Mean DSC [%] Std. Dev. [%] Min. DSC [%] Max. DSC [%]

2 (A) 65.23 5.92 54.85 74.64

3 (B) 67.61 8.21 54.31 79.01

5 (C) 69.45 10.21 48.68 82.99

9 (D) 68.43 11.47 40.50 84.58

17 (E) 70.28 11.47 47.43 85.68

33 (F) 70.41 11.66 44.90 85.24

65 (G) 70.39 12.18 42.87 85.59

129 (H) 70.23 12.33 42.33 85.66

doi:10.1371/journal.pone.0063082.t004

Repeated Streamline Tracking
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varied with complex Gaussian noise, with reduced signal to noise

ratios about 65 (noise 1) and 32 (noise 2), comparable to acquired

DTI data on our 3T MRI System (Tim Trio, Siemens, Erlangen,

Germany) with signal to noise ratios of around 38.

Table 5. Dice Similarity Coefficient (DSC) according to group variable FBM.

Value of FBM (Group) Mean DSC [%] Std. Dev. [%] Min. DSC [%] Max DSC [%]

10 (A) 65.20 10.50 40.50 82.03

20 (B) 72.89 7.72 48.68 84.27

30 (C) 78.59 6.05 59.87 85.68

40 (D) 79.92 5.20 64.20 85.54

50 (E) 78.01 5.05 64.20 84.01

60 (F) 73.94 6.52 54.85 80.81

70 (G) 67.35 5.38 54.31 75.11

80 (H) 63.86 3.96 54.31 73.08

90 (I) 57.72 2.68 50.38 62.32

100 (J) 52.57 5.73 42.33 62.32

doi:10.1371/journal.pone.0063082.t005

Figure 2. 3D view of repeated fiber tracking results. 3D view of results obtained from the repeated tracking approach for an anatomical
software phantom with modeled left corticospinal tract, color-coded with green areas indicating regions covered by a large number of fiber tracking
applications (high fiber bundle membership) and blue areas indicating regions that are covered by only few fiber tracking results (low fiber bundle
membership).
doi:10.1371/journal.pone.0063082.g002
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Additionally, the presented method was also applied to MRI

data of two healthy volunteers (27 years old female and 30 years

old male), acquired on a 3T MRI System (Tim Trio, Siemens,

Erlangen, Germany) at the University of Marburg including a T1-

weighted 3D image (3D-Magnetization Prepared Rapid Gradient

Echo (MPRAGE): repetition time (TR) 1900 ms, echo time (TE)

2.26 ms, field of view (FoV) 256 mm, matrix 2566256, slice

thickness 1 mm, 176 slices, sagittal), a diffusion weighted image

data set using single shot echo planar imaging (TR 7800 ms, TE

90 ms, FoV 256 mm, matrix 1286128, slice thickness 2 mm,

numbers of excitation 1, b = 1000s/mm2, 30 non-collinear diffu-

sion-encoding gradients, voxel size of 26262 mm3) and a

functional MRI data set using a word generation task (TR

2000 ms, TE 30 ms, FoV 230 mm, matrix 64664, slice thickness

3.6 mm, voxel size of 3.663.663.6 mm3).

Furthermore, the algorithm was applied to MRI data of a 56

years old male patient with a left precentral anaplastic astrocytoma

WHO III and a 65 years old female patient with a left temporo-

parietal glioblastoma multiforme WHO IV. The same protocol as

for the volunteers was used for data acquisition.

Informed written consent was obtained from both patients

before MRI data acquisition, as part of a prospective study on

patients with primary brain tumors. Study approval was given by

the local ethics committee of the University of Marburg. Informed

consent was also obtained from both volunteers, members of our

research group, for testing MRI acquisition schemes (in coordi-

nation with the local ethics committee).

Image Analysis
The procedure is structured into a preprocessing step for seed

region calculation, a processing unit for fiber tracking, and a post

processing step for object generation. The workflow is summarized

and illustrated in Figure 1.

Figure 3. Influence of fiber bundle membership (FBM). Overview of different levels of FBM (left side) with additional overlay of ground truth
data in red (right side): FBM 0% (first row), FBM 30% (second row), FBM 50% (third row) and FBM 100% (forth row).
doi:10.1371/journal.pone.0063082.g003
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Step 1: ROI definition. To set up an initial fiber recon-

struction of the desired white matter tract, ROIs are placed

manually to define seed and target regions.

In case of the corticospinal tract (and the part of the modeled

corticospinal tract in phantom data), the seed region is manually

drawn by an experience neurosurgeon outlining the cerebral

peduncle in the T1-weighted data set. The second seed region is

manually drawn, outlining the precentral gyrus.

As for the arcuate fascicle, activation areas from fMRI data

acquisition using a word generation paradigm were used to define

Broca’s and Wernicke’s area as seed and target regions.

Alternatively, e.g. in case of non-utilizable fMRI results, seed

regions were drawn manually outlining the horizontal part of the

arcuate fascicle lateral to the corticospinal tract within coronal

images (with FA overlay) [81]. The second seed region is drawn

manually outlining the descending portion of the arcuate fascicle

in the posterior temporal lobe [82].

Step 2: Initial fiber tractography and fiber mask

generation. Using the defined first ROI as seed region, an

initial fiber tract is reconstructed using deterministic fiber

tractography within the medical image processing platform

NeuroQLab [83] (as well as tensor calculation on a set of DWI

data). The initial reconstruction result is then restricted by the

application of the second ROI (target) used as include region.

The resulting fiber bundle is mapped to a binary mask where

each voxel scores the gray value of 1 if it is crossed or touched by a

fiber and of 0 otherwise.

Step 3: Centerline calculation. The centerline of the

reconstructed fiber bundle is calculated according to Klein et al.

[84]. For this purpose, the single streamlines are sampled at n

points, and each of the n centerline points is calculated as the

average of the corresponding streamline points.

Step 4: Seed region calculation. For each sampled point of

the centerline, a plane upright to the centerline’s local direction,

given by two consecutive centerline points is calculated. Within

each plane, according to the preprocessing step of a previous

publication on boundary calculation [85], equally distributed rays

are sent out, and the rays are sampled at equally spaced points

each. The first point (contour point) of each ray outside of the

masked tract volume defines the initial fiber tract outlines. The

contour of the resulting generated seed region for the plane is then

defined by spline approximation of contour points found for the

rays (SCALING 0).

Figure 4. Comparison of standard fiber tracking and repeated fiber tracking. Comparison of results according to the Dice Similarity
coefficient (DSC) derived by standard deterministic fiber tracking (in blue) and results of the repeated fiber tracking approach (green) within the
group of significantly best parameter settings (n = 315), subdivided by grouping variable NOISE (n = 105).
doi:10.1371/journal.pone.0063082.g004

Repeated Streamline Tracking
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Figure 5. Comparison of two-ROI-approach, whole brain tractography and repeated fiber tracking (example). Comparison of fiber
tracking results in blue achieved by the two-ROI-approach (row 2), traditional whole brain tractography (row 3), variant of whole brain tractography
(row 4) and the repeated tracking approach (row 5) in axial, sagittal and coronal view within the anatomical phantom data set and underlying
modeled ground truth (row 1) in green.
doi:10.1371/journal.pone.0063082.g005

Repeated Streamline Tracking
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Since the deterministic fiber tractography often underestimates

the spatial extent of the tract, seed regions with SCALING 0 are

enlarged. Therefore, the contour points are moved outwards along

the ray according to the SCALING level, i.e. for SCALING 1 the

contour points are moved 1 mm outwards.

Step 5: Repeated fiber tractography. The main part

relates to the application of the deterministic fiber tracking for

all calculated seed regions using the initial seed- and include region

as alternative include ROIs. Since the fiber bundle center is well

estimated with routinely used algorithms, a combined use of the

initial ROIs as include regions would not provide much benefit.

The alternative use of the regions allows capturing also areas close

to boundaries or branches. After finishing all tracking procedures,

each fiber tracking result is assembled into a binary image, as it is

also done for the initial tracking result. Finally, all binary masks for

the calculated seed regions are combined into one mask including

gray values from 0 to n, where n is the number of seed regions.

Step 6: Combination and visualization. For visualization,

several objects can be generated by applying a threshold to the

final mask image to model the level of fiber bundle membership

(FBM) of each voxel. Therefore, different levels are defined. The

voxels ascribed to the kernel of the fiber bundle are described by

an FBM of 100% to 90% (FBM 90), i.e., 90% or more

reconstructions of the fiber bundle include the volume element.

In analogy, further objects with lower FBM levels (e.g., FBM

80 = 80% or more reconstructions are included) can be created

and displayed as a 3D overlay on the fiber bundle kernel.

For our implementation and evaluation, the medical image

prototyping platform MeVisLab (www.mevislab.de) and the

neuroimaging prototype NeuroQLab [83] were used. Additional

modules and scripting routines were implemented in C++ and

Python, respectively. Evaluations were performed on an Intel Core

i7-2600K CPU, 3.4 GHz, 16 GB RAM, Windows 7 Professional,

SP1.

Figure 6. Visualization of results of repeated fiber tracking. Color-coded results of repeated fiber tracking procedure in sagittal, axial and
coronal view with summed up fiber tract reconstructions derived from 128 seed region with light areas showing regions of high consensus between
the tracking results (classification according to FBM), additional overlay of modeled corticospinal tract as ground truth in red on the right side.
doi:10.1371/journal.pone.0063082.g006

Repeated Streamline Tracking
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To evaluate the software phantoms with known courses and

extents of the modeled fiber bundles, the Dice Similarity

Coefficient (DSC) [86] is used. The DSC is a widely used measure

in medical imaging studies to quantify the degree of overlap

between two segmented objects A and B, in this case the reference

segmentation (ground truth) and the algorithmically computed

segmentation result. Since a DSC of 1 describes a perfect match of

both segmentations, a DSC of 0 indicates that there is no overlap.

The independent variables ‘‘number of seed regions (SEEDS)’’,

‘‘seed region scaling (SCALING)’’, ‘‘fiber bundle membership

(FBM)’’ and ‘‘image noise (NOISE)’’ are varied systematically

according to Table 1. In total, 1440 different parameterizations

were evaluated.

For a comparison with standard procedures, deterministic fiber

tractography was performed using the two-ROI-approach, with

the first ROI as seed region and the second ROI as target region.

In addition, original whole brain tractography, using the whole

brain as seed volume, and a variant of whole brain tractography,

using the whole set of calculated seed regions as seed volume, were

performed. Tractography results were in both cases restricted

using the initial seed ROI and include ROI as combined include

ROIs (AND).

Statistical analysis was performed in IBM SPSS Statistics 20 for

Windows (SPSS Inc., Chicago, Illinois). The level of significance is

set to p,0.05. Analysis of variance homogeneities was performed

applying the Levene test for each independent variable (NOISE,

SEEDS, SCALING, FBM). According to the test results,

univariate ANOVA with the post-hoc Tukey-HSD-Test or the

Games-Howell-Tests were performed. Comparison of repeated

fiber tractography with the deterministic fiber tractography

methods was performed using the Wilcoxon-Mann-Whitney-U-

test.

Further comparison with probabilistic tractography using the

volunteer and patient data was performed within FSL (SMRIB

Software Library v. 5.0) [87–89] using the Diffusion Toolbox FDT

[90,91] and parameter settings as presented in [91].

Results

Results of Standard Deterministic Fiber Tracking
The standard deterministic fiber tracking was applied to three

types of phantom data according to the image noise.

The two-ROI-approach took only a few seconds each, as well as

the variant of the whole brain tractography and original whole

brain tractography.

The two-ROI approach resulted in a DSC of 65.08% 65.31%

(range: 56.99%–73.50%) for noise level 0, for noise level 1 in a

DSC of 64.73% 66.02% (range: 54.85%–74.15%). The tracking

procedure applied to the image with noise level 2 resulted in a

DSC of 65.91% 66.42% (range: 57.72%–74.64%).

The adapted version of whole brain tractography also led to an

underestimation of the tract volume with a DSC of 67.12%

60.86% (range: 65.38%–67.59%) for noise level 0, a DSC of

75.10% 60.28% (range: 74.65%–75.33%) for noise level 1 and a

DSC of 72.91% 60.15% (range: 72.61%–72.99%) for noise level

2. Original whole brain tractography led to an underestimation of

the tract volume with a DSC of 67.16% for noise level 0, a DSC of

75.03% for noise level 1 and a DSC of 75.54% for noise level 2.

Analysis of Repeated Fiber Tracking Results
Univariate ANOVA according to the Levene test was

performed for the variables NOISE and SCALING with the

post-hoc Tukey-HSD-Test. For SEEDS and FBM, Games-

Howell-Tests were applied.

The time of segmentation via repeated tracking procedure

differed according to the number of seed regions used for repeated

tractography, reaching from a few seconds (less seed regions) to

about 3 minutes for the largest number of seed regions.

Impact of Image Noise (NOISE)
According to the grouping variable NOISE, three subgroups

were classified with n = 480 samples for each subgroup.

For group A, repeated fiber tracking delivered DSCs, on the

average of 69.27% 610.56% (range: 41.35%–85.44%), 68.93%

610.96% (range: 40.50%–85.68%) for group B and 68.82%

610.75% (range: 41.55%–85.66%) for group C (Table 2).

According to univariate ANOVA, the image noise does not

significantly affect the quality of fiber bundle segmentation (with

the DSC as measure of quality) using the presented method

(p = 0.794).

Impact of Seed Region Scaling (SCALING)
According to the grouping variable SCALING, eight subgroups

were classified with n = 185 samples each.

Table 6. Dice Similarity Coefficients (DSC) for best
parameterizations of the repeated fiber tracking approach.

NOISE 0

Repeated FT two-ROI-FT

Whole
brain FT

Whole brain
FT

(variant) (original)

Mean DSC [%] 81.02 65.08 67.12 67.16

Std. Dev. [%] 4.13 5.31 0.86

Min. DSC [%] 59.87 56.99 65.38

Max. DSC [%] 85.44 73.50 67.46

NOISE 1

Repeated FT two-ROI-FT Whole brain
FT

Whole brain
FT

(variant) (original)

Mean DSC [%] 81.32 64.73 75.10 75.03

Std. Dev. [%] 4.22 6.02 0.28

Min. DSC [%] 60.03 54.85 74,65

Max. DSC [%] 85.68 74.15 75,33

NOISE 2

Repeated FT two-ROI-FT Whole brain
FT

Whole brain
FT

(variant) (original)

Mean DSC [%] 80.99 65.91 72.91 75.54

Std. Dev. [%] 3.81 6.42 0.15

Min. DSC [%] 61.88 57.72 72,61

Max. DSC [%] 85.66 74.64 72,99

1FT: fiber tractography.
doi:10.1371/journal.pone.0063082.t006
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The repeated fiber tracking procedure delivered mean DSCs

ranging from 67.41% (group A) to 70.32% (group C), with

maximal DSCs of 82.03% to 85.68% (see Table 3).

Significant differences between subgroups related to SCALING

were found using the univariate ANOVA (p = 0.008). Post-hoc

analysis with the Tukey-HSD-test showed significant differences

between group A and group C (p = 0.035), with significantly

improved results for group C. No significant differences were

found for all other subgroups. Analysis of homogenous subgroups

according to Tukey-HSD delivered two homogeneous subgroups 1

(SCALING 0, 1, 3, 4, 5) and 2 (SCALING 1, 2, 3, 4, 5).

Impact of Number of Seed Regions (SEEDS)
According to the grouping variable SEEDS, six subgroups were

classified each with n = 240 samples each.

The presented procedure resulted in mean DSCs ranging from

65.23% (group A) to 70.41% (group F), with maximal DSCs of

74.64% to 85.68% (see Table 4).

The impact of the independent variable SEEDS was evaluated

using the Games-Howell-Test. Highly significant differences

(p = 0.000) were found between subgroups A and C, A and E, A

and F, A and G, A and H with subgroup A providing significantly

worse results. Less significant differences were also found between

subgroups A and B (p = 0.038) and subgroups A and D (p = 0.023)

also giving significantly worse results for subgroup A in compar-

ison to the other groups. All other pair wise comparisons did not

deliver significant differences.

Impact of Membership Variable (FBM)
According to the grouping variable FBM, ten subgroups were

classified with n = 144 samples each.

Mean DSCs ranging from 52.57% to 79.92% were reached

with the repeated fiber tracking approach according to FBM

classification; with maximal DSCs in the range of 62.32% to

85.68% (see Table 5).

According to Games-Howell-Tests no significant differences

were found for subgroups C, D, E (C–D: p = 0.598, D–E:

p = 0.054, C–E: p = 0.997), for FBM-subgroups B and F

(p = 0.963), subgroups A and G (p = 0.472) and A and H

(p = 0.914). All other possible pair wise combinations of FBM-

subgroups gave highly significant differences (p = 0.000). Consid-

ering Dunnett’s-C-Test, subgroups C, D, E are significantly better

(according to DSC) than all other groups; subgroups B and F are

superior to subgroups A, G, H, I, J. Subgroup G provided better

results than subgroups H, I and J, and subgroups A and H gave

better results than groups I and J. Finally, subgroup I provided

better results than subgroup J.

The results of the repeated tracking approach (see Figure 2) do

not differ significantly according to the evaluated image noise. The

scaling used for seed region generation shows significantly better

results for a scaling of 2 mm in contrast to no scaling, providing

two homogeneous subgroups with scaling from 1 mm to 5 mm

and one subgroup with 0 mm offset and 2 mm to 5 mm offset.

Since 2 mm scaling should be preferred over 0 mm scaling,

parameterizations of the first subgroup should be considered for

good fiber segmentation results. The analysis of the number of

seed regions shows significant differences only between the use of

Figure 7. Application of repeated fiber tracking on healthy volunteer data: corticospinal tract. Comparison (from left to right) of the
results from standard deterministic fiber tracking, variant of whole brain fiber tracking, whole brain fiber tracking, probabilistic fiber tractography,
unfiltered results of the repeated fiber tracking method and filtered results of the repeated fiber tracking method with a fiber bundle membership of
50% using a seed region scaling of 2 mm and 128 generated seed regions.
doi:10.1371/journal.pone.0063082.g007
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2 seed regions and all other possible evaluated numbers of seed

regions; more than 2 seed regions resulted in improved segmen-

tation results. The evaluation of the fiber bundle membership

variable delivers significantly different results, best for 30%, 40%

and 50% FBM, see Figure 3.

Figure 8. Application of repeated fiber tracking on healthy volunteer data: corticospinal tract. Comparison (from left to right) of the
results from standard deterministic fiber tracking, variant of whole brain fiber tracking, whole brain fiber tracking, probabilistic fiber tractography,
unfiltered results of the repeated fiber tracking method and filtered results of the repeated fiber tracking method with a fiber bundle membership of
50% using a seed region scaling of 2 mm and 128 generated seed regions.
doi:10.1371/journal.pone.0063082.g008

Figure 9. Application of repeated fiber tracking on patient data with a left precentral glioma: corticospinal tract. Comparison (from
left to right) of the results from standard deterministic fiber tracking, variant of whole brain fiber tracking, whole brain fiber tracking, probabilistic
fiber tractography, unfiltered results of the repeated fiber tracking method and filtered results of the repeated fiber tracking method with a fiber
bundle membership of 50% using a seed region scaling of 2 mm and 128 generated seed regions, tumor segmented manually in red.
doi:10.1371/journal.pone.0063082.g009
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In total, best results were obtained for a scaling of 1 mm to

5 mm, more than 2 seed regions and a fiber bundle membership

of 30–50%.

Analysis of this subset of acquired data (n = 105 for each class of

NOISE) results in higher values of DSC in correlation to the

standard deterministic tracking procedure with only one seed

region resulting in DSCs of 65.08% 65.31% (NOISE 0), 64.73%

66.02% (NOISE 1) and 65.91% 66.42% (NOISE 2). The named

subset results in mean DSC values of 81.02% 64.13% (NOSISE

0), 81.32% 64.22% (NOISE 1) and 80.99% 63.81% (NOISE 2),

see Table 6 and Figure 4. Comparing the subgroups of repeated

fiber tracking with deterministic fiber tracking procedures used by

default, the standard procedures differed significantly for all noise

levels (p = 0.000) according to Wilcoxon-Mann-Whitney-U-test

from the achieved results of the presented method. Therefore, the

presented approach can be considered as a promising technique to

improve the quality of fiber bundle segmentation significantly, see

Figures 5 and 6.

With the resulting information about suitable parameterization

to improve fiber tractography results and the noise independent

behavior, the presented method was applied to healthy volunteer’s

data and to two patient data sets with intracerebral gliomas. The

corticospinal tract was reconstructed for the leg area on the left

and right side in case of volunteer data and on the left side in case

of the patient data set including the left precentral glioma. Besides,

the arcuate fascicle was reconstructed in case of both volunteer

data sets and in case of the patient data set including the left

temporo-parietal glioma. For repeated fiber tractography, a seed

region scaling of 2 mm, 128 generated seed regions and a fiber

bundle membership of 30% to 50% was used.

A comparison of the repeated fiber tractography approach

(without and with application of FBM), the two-ROI-approach,

the whole brain tractography approach, its variant and addition-

ally probabilistic fiber tractography (connectivity analysis) is

presented in Figure 7 and 8 for part of the corticospinal tract

encoding motor function for the lower extremities, in two healthy

volunteers. Furthermore, tractography was applied to a patient

data set, with a precentral anaplastic astrocytoma WHO III.

Results are shown in Figure 9. Further comparison is presented for

the arcuate fascicle in Figures 10 and 11 in case of healthy

volunteers and in case of a patient data set with a temporo-parietal

glioblastoma multiforme WHO IV. Results are shown in

Figure 12.

Discussion

In all cases, application of the repeated fiber tractography

approach led to widened fiber bundle segmentation in comparison

to results of the two-ROI-approach and improved results of the

whole brain fiber tracking approach in concordance with previous

tests on the software phantom data. Probabilistic fiber tracto-

graphy (within FSL) reconstructs only a subset of the corticospinal

tract similar to the other methods. Probabilistic fiber tractography

thereby took approximately 6 hours (mainly for preprocessing with

BEDPOSTX resulting in a distribution of diffusion parameters for

each voxel). Two-ROI-approach and whole brain fiber tracto-

graphy took only a few seconds, the repeated fiber tracking

approximately 3 minutes.

For application in the clinical routine, the use of fiber

tractography requires short data acquisition times due to patient

compliance, workflow efficiency, and also fast reconstruction

techniques for segmentation and especially intraoperative update

of functional information. Since DTI data acquisition is possible

with short acquisition times in the range of 4–5 minutes on a 3T

MRI system and approximately 8 minutes on a 1.5T MRI system

(with the previous described setting), the fiber tractography

algorithms based on DTI data sets have been tested extensively

and deterministic streamline fiber tractography is available in most

Figure 10. Application of repeated fiber tracking on healthy volunteer data: arcuate fascicle. Comparison (from left to right) of the
results from standard deterministic fiber tracking, variant of whole brain fiber tracking, whole brain fiber tracking, probabilistic fiber tractography,
unfiltered results of the repeated fiber tracking method and filtered results of the repeated fiber tracking method with a fiber bundle membership of
50% using a seed region scaling of 2 mm and 128 generated seed regions.
doi:10.1371/journal.pone.0063082.g010

Figure 11. Application of repeated fiber tracking on healthy volunteer data: arcuate fascicle. Comparison (from left to right) of the
results from standard deterministic fiber tracking, variant of whole brain fiber tracking, whole brain fiber tracking, probabilistic fiber tractography,
unfiltered results of the repeated fiber tracking method and filtered results of the repeated fiber tracking method with a fiber bundle membership of
50% using a seed region scaling of 2 mm and 128 generated seed regions.
doi:10.1371/journal.pone.0063082.g011

Repeated Streamline Tracking

PLOS ONE | www.plosone.org 13 May 2013 | Volume 8 | Issue 5 | e63082



surgical planning stations. Intensive clinical evaluation has been

performed for the corticospinal tract to estimate accuracy of fiber

tracking, still longing for more accuracy, and thereby for increased

tumor volume reduction [68,69,76].

The presented method initially uses the clinically widespread

used tensor deflection algorithm based on DTI, combining the

result of different automatically initiated applications, similar to

previously published methods like the application of bootstrapping

[70] or wild bootstrapping [73] or the application of variational

noise for uncertainty estimation [69]. In contrast to the boot-

strapping technique, the method uses only one acquired data set

and thereby keeps the time requirements of clinical usage. In

contrast to wild bootstrapping with a need for a model to fit to and

calculate residuals, repeated fiber tracking can easily be adapted to

other models and model-free approaches for fiber reconstruction

[74]. Additionally, no changes of image quality have to be

performed for repeated application of fiber tractography. All

approaches mentioned above concentrate on the fiber boundary,

with repeated measurement using different data sets, noise varied

measurements, or re-seeding using the basic data set.

In contrast to probabilistic fiber tractography methods, that

deliver a connectivity map, direct thresholding can be applied for

fiber bundle segmentation based on the accumulated fiber tracking

results. In case of probabilistic tractography, the connectivity score

is distance dependent, requiring an additional re-seeding for final

fiber bundle segmentation and application in neurosurgical

practice, increasing the processing time.

Up to now, as DTI is still the routinely applied model, fiber

tractography algorithms based on the 2nd order tensor model are

used in clinical practice. However, there are many challenging

topics arising due to the use of DTI. With its restricted 2nd order

tensor model, assuming Gaussian distributed diffusion, voxels with

multi-fiber populations cannot be represented correctly, resulting

in an inability to resolve crossing or kissing fibers. Even fanning

fiber tracts are hard to resolve with this assumption [92], for

example making it difficult to reconstruct the whole corticospinal

tract on the basis of DTI and streamline tractography. Since

approximately one third of voxels in the brain contain more than

one fiber population [91], different approaches for description of

diffusion functions (e.g., different model, model-free approaches)

have to be found. Advanced techniques like high angular

resolution diffusion imaging (HARDI) [93] or Q-Ball imaging

(QBI) [94] offer opportunities for the application of advanced

diffusion functions to overcome the drawbacks of the restricted

tensor model provided by DTI. Up to now, these techniques are

not widely used in clinical applications due to their long

acquisition times, high hardware-performance requirements and

processing times. Acquisition times for scanning protocols using

128 diffusion encoding gradients are up to 20 minutes on a 3T

MRI system, and nearly 40 minutes on a 1.5T MRI system, which

are most commonly available. Thus, until now these techniques

are of lower feasibility in clinical practice. Nevertheless, they will

be increasingly suitable for clinical evaluation and clinical use.

Due to the modular structure of the repeated fiber tracking

framework, the used diffusion model ‘‘diffusion tensor’’ as well as

the basic deterministic streamline tractography algorithm can

easily be replaced by other techniques resulting in a streamline

representation. Approaches resulting in a 3D volume representa-

tion of the fiber bundle, like the volume growing approach [53],

need an alternative preprocessing step for centerline calculation,

skeletonizing the volume to its centerline.

In the future, alternative approaches will be included for

repeated fiber tracking, also based on advanced imaging

techniques, if image acquisition and processing could be

performed within adequate times (e.g. HARDI with compressed

sensing techniques) for example resolving the fanning of the

corticospinal tract, or white matter tracts that can hardly be

visualized in clinical routine.

For theoretical purposes, time consuming HARDI techniques

and advanced fiber tractography algorithms are suitable, however

not efficiently applicable in clinical routine.

Our study group currently works on tractography on the basis of

currently published theoretical approaches using compressed

sensing techniques for reconstruction of HARDI signals using

sparse data [95,96] in comparison to traditional HARDI

acquisition. Initial experience on the reconstruction of the

language pathways using HARDI signals with compressed sensing

techniques in comparison to DTI related reconstruction based on

the same DTI data sets (30 gradient diffusion encoding directions),

delivered promising results [38]. Until now, HARDI using

compressed sensing is not implemented on a commercially

available software platform. Thus, integration of these data into

neuronavigation systems remains a future perspective. Finally, we

aim at the integration in the repeated fiber tractography

framework.

The presented approach concentrates on the commonly

reconstructed part of the corticospinal tract, as large white matter

tract in the human brain, which has been extensively examined

and evaluated for clinical purposes. Since the repeated fiber

tracking approach delivers promising results for better estimation

of the spatial extent of the tract, also in the vicinity of intraaxial

tumors (Figure 8), where anatomy is distorted and diffusion

patterns might be changed, it will also be adapted to other relevant

white matter tracts. A first impression is given by the reconstruc-

tion of the arcuate fascicle (Figure 9) in consistence with results

obtained from the corticospinal tract. Furthermore, this approach

Figure 12. Application of repeated fiber tracking on patient data with a left temporo-parietal glioma: arcuate fascicle. Comparison
(from left to right) of the results from standard deterministic fiber tracking, variant of whole brain fiber tracking, whole brain fiber tracking,
probabilistic fiber tractography, unfiltered results of the repeated fiber tracking method and filtered results of the repeated fiber tracking method
with a fiber bundle membership of 50% using a seed region scaling of 2 mm and 128 generated seed regions, tumor segmented manually in red.
doi:10.1371/journal.pone.0063082.g012
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will be tested for other large white matter tracts such as the optic

radiation on basis of the developing advanced methods and

evaluated clinically.

Conclusions
We presented a new fast approach for the reconstruction of fiber

bundles in diffusion weighted imaging data using automatically

calculated reconstruction along initial tracking results for the

desired white matter tract. Evaluation on an anatomical software

phantom shows that the presented method is able to improve the

segmentation quality of white matter tracts with adequate

processing times significantly in contrast to the standard tensor

deflection (two-ROI-approach and whole brain tractography

approaches), which is routinely used in most clinical settings.
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