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Abstract Purpose: Develop a neural fiber reconstruction method based on
diffusion tensor imaging which is not as sensitive to user-defined regions of
interest as streamline tractography.
Methods: A simulated annealing approach is employed to find a non-rigid
transformation to map a fiber bundle from a fiber atlas to another fiber bundle
which minimizes a specific energy functional. The energy functional describes
how well the transformed fiber bundle fits the patient’s diffusion tensor data.
Results: The feasibility of the method is demonstrated on a diffusion tensor
software phantom. We analyze the behavior of the algorithm with respect to
image noise and number of iterations. First results on the datasets of patients
are presented.
Conclusions: The described method maps fiber bundles based on diffusion
tensor data and shows high robustness to image noise. Future developments
of the method should help simplify inter-subject comparisons of fiber bundles.

Keywords Diffusion Tensor Imaging · Fiber Tracking · Atlas · Registration

1 Introduction

Diffusion tensor imaging (see [6], [19]) is a magnetic resonance technique which
measures the strength and direction of water molecule diffusion. Assuming
that the main diffusion direction in an image voxel matches the average direc-
tion of the underlying fiber network, fiber tracking (FT) methods have been
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developed to reconstruct neural fiber bundles non-invasively and in-vivo. An
overview of current tractography techniques can be found in [13]. Fiber track-
ing has increasingly gained acceptance as a pre- and intra-operative clinical
tool used to determine, for example, positions of relevant neural tracts in rela-
tion to a tumor to be resected. In particular, streamline FT methods ([5], [17]),
which start from a given region of interest (ROI) and propagate streamlines
along the main diffusion directions of the diffusion tensors, enjoy widespread
clinical use. This is possibly due to their quick computation times and the de-
terministic outputs they produce. A drawback of this type of algorithm is that
the tracking result can be very sensitive with respect to the location and size
of the starting ROIs chosen by the user [10]. Once the tracking has been per-
formed, additional ROIs are often needed to exclude false positive streamlines,
resulting in extensive post-processing operations.

In recent years, several atlas-based fiber reconstruction methods have been
proposed. They are generally less dependent on user defined ROIs than stream-
line FT. These atlas-based methods start by computing a group averaged
diffusion tensor image (DTI) which is then segmented to generate a parcella-
tion map. The authors of [16] determine anatomical labels of cortex regions,
manually at first and then in a refined manner via streamline tractography.
Tract reconstruction is achieved by mapping the anatomical labels onto a pa-
tient’s DTI and determining all streamlines with specific start and end regions.
In [18], a white matter parcellation map (WMPM) is constructed by manually
segmenting several tracts of interest based on the underlying color-coded ori-
entation map. It is suggested that the WMPM can be registered to a patient’s
dataset to either automatically determine the location of specific tracts or as
a reference for manual ROI-based segmentation. In [23,24], streamline FT is
employed on the averaged DTI, which is then registered onto the patient’s
DTI. For tract reconstruction, the registration transformation is applied to a
binary mask derived from the tracked fibers.

In this work, we propose to start from a precomputed atlas of fiber bundles
which are mapped onto the DTI data of the patient. In our opinion, focusing on
mapping specific fiber bundles instead of a whole DTI should lead to compu-
tationally less expensive shape-consistent reconstructions. No post processing
operations are needed once a fiber bundle has been “registered”. Details about
the suggested algorithm can be found in Section 2. Results of both synthetic
and patient data are presented in Section 3. Current limitations and possible
future improvements of the method are discussed in Section 4.

2 Methods

We now describe the proposed reconstruction approach. An overview of the
algorithm and of how the individual steps are combined is presented in Algo-
rithm 1.
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2.1 Fiber Representation

In this article a “fiber bundle” F denotes a set of m fibers {fj}j=1,...,m. We
represent a fiber fj as a tuple of nj points:

fj = (P1j , P2j , P3j , . . . , Pnj ) (1)

where P1j is the starting point of fj and Pnj its endpoint. Each fiber point
is connected linearly to the next. Thus, we may associate a vector −→vij to each
fiber point Pij (but the endpoint), defined as

vij = Pi+1j − Pij for 1 ≤ j ≤ m, for 1 ≤ i < nj . (2)

Without loss of generality, we shall assume in the following that the distance
between fiber points is constant. Whenever a transformation alters the distance
between points, fibers are linearly resampled to maintain the assumption’s
validity.

2.2 Fiber Atlas

Our fiber atlas consists of various tracked fiber bundles. The tracking was
performed based on the DTI data (resolution = 1.80 × 1.80 × 1.98 mm3, b
value = 1000 s/mm2, TR/TE = 12000/84 ms, two repetitions with one b=0
image and 30 gradient directions each) of a single healthy volunteer using the
global approach by [15]. The tracked bundles include the arcuate fasciculus,
the optic tracts, and fibers of the corticospinal tract originating from the hip,
leg, hand, and face areas of the primary motor cortex (PMC).

2.3 Energy Functional

Consider a fiber bundle F from the fiber atlas and the diffusion tensor image I :
R3 → S+(3,R), where S+(3,R) is the six-dimensional Riemannian manifold of
3×3 real symmetric positive-definite matrices. Our goal is to find a mapping
Γ from a fiber bundle F to another fiber bundle Γ (F ) which minimizes a
specific energy functional E(Γ (F ), I). In this work the mapping Γ preserves
the number of tracked fibers but not necessarily their length (which, after
resampling, corresponds to the number of points that define the individual
fibers). The energy functional measures the match between the transformed
fiber bundle and the main diffusion directions at the corresponding locations.
It is defined as follows:

E(Γ (F ), I) =

m∑
j=1

nj−1∑
i=1

(
− log

(
vij

T I(Pij )vij

))
nj − 1

(3)
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where T indicates the transpose operation, nj indicates the number of points
which define the j-th fiber and I(Pi) is determined via nearest-neighbor inter-
polation. The energy functional is normalized with respect to the total number
of fiber points.

In regions where two fiber bundles cross, diffusion tensors are generally
disc-shaped. As no main diffusion direction is defined within this region, a
minimization of the energy functional will not favor fibers running in a specific
direction. The path of the mapped fiber bundle will instead be determined
by the smoothness constraint imposed on the mapping Γ and by the main
diffusion directions in regions adjacent to the fiber crossing. The same holds
for a region infiltrated by a tumor and characterized by isotropic diffusion.
However, the registration result is also influenced by the mean diffusivity in this
region: if the mean diffusivity is high, a minimization of the energy functional
will lead to fibers that go through the infiltrated region, if the mean diffusivity
is low, fibers will bend around the tumor. Therefore, if the user is confident that
fibers do not pass through a specific lesion (e.g. in the case of a metastasis), it
may be useful to explicitly force fibers to bend around the lesion by weighting
the corresponding diffusion tensors so that their mean diffusivity is decreased.

2.4 Simulated Annealing

To minimize the energy functional defined in Equation 3, we employ a strategy
based on simulated annealing. Simulated annealing [14,22] is a probabilistic
metaheuristic: it iteratively adds a random perturbation to a given initial
state. The decision to move to the new state depends on whether this state
corresponds to a lower energy level or not and on the value of an artificial
temperature variable T which decreases with each iteration. When the tem-
perature is high, the decision to move to the new state is almost random;
when the temperature decreases, “downhill” moves are increasingly favored.
The main advantage of simulating annealing compared to “greedy” algorithms
is that it is relatively robust with respect to solutions being trapped in local
minima.

Depending on the fiber bundle to be reconstructed, we choose the corre-
sponding tract from the fiber atlas and manually register it onto the patient’s
diffusion tensor image. During the manual registration process, we allow for
the bundle to be translated, scaled, and rotated. The result is used as the
initial state of the simulated annealing approach.

2.4.1 Candidate Generation

Next, we illustrate how the current state is perturbed during the simulated
annealing process. Similarly to the initial manual registration step, we apply
a combination of translation, scaling, and rotation to the current fiber bundle.
However, within the suggested approach, these operations do not necessarily
act globally on the whole fiber bundle, but may also have a “local” effect on
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it, depending on a scale parameter σscale. The concatenation of “local” linear
operations ultimately results in a non-rigid deformation of the original bundle
from the fiber atlas. To apply one of the mentioned linear operations to the
current fiber bundle, we start by randomly selecting (according to a uniform
distribution) one fiber point, which we shall denote by Pcenterj for a fixed j.
This point corresponds to the location along the j-th fiber of the bundle, where
the effect of the local transformation is the strongest. The transformation of
the remaining points of the j-th fiber is computed depending on the points’
distances to Pcenterj . To compute a coherent transformation along the whole
bundle, we determine the point which lies closest to Pcenterj for each fiber.
We thus obtain a center point for each fiber of the bundle and may assign
a weight wij to each fiber point. This weight determines the strength of the
transformation at the point and is computed as follows:

wij =
G(Pij , Pcenterj , σscale)

G(Pcenterj , Pcenterj , σscale)
for 1 ≤ j ≤ m, for 1 ≤ i ≤ nj (4)

where G(·, µ, σ) denotes a Gaussian function with mean µ and standard devia-
tion σ. The following sections detail how the single transformations are applied
to the bundle.

Translation. The random translation magnitude t is sampled from the 3-
D Gaussian distribution N (·,0, σtranslation). The parameter σtranslation reflects
the expected magnitude. The translated points are determined according to

P ′
ij = Pij + wij · t (5)

Examples of global and local translations are displayed in Figs. 1(a) and 1(d).
Scaling. The random scaling magnitude s is sampled from the 3-D Gaus-

sian distribution N (·,1, σscaling). The parameter σscaling reflects the expected
magnitude. The scaled points are determined in two steps. First, the scaling
is applied to the vectors vij :

v′
ij = wij · s ∗ vij (6)

where ∗ indicates the component-wise vector product. Next, the new position
of the fiber points is determined via

P ′
ij =


Pcenterj −

centerj−1∑
i′j=ij

v′
i′j

if ij ≤ centerj

Pcenterj +
centerj∑
i′j=ij

v′
i′j

else

(7)

Examples of global and local scalings are displayed in Figs. 1(b) and 1(e).
Rotation. The random rotation angle r is sampled from the 3-D Gaus-

sian distributionN (·,0, σrotation). The parameter σrotation reflects the expected
magnitude of the rotation angles. The components of r represent the angles of
rotation around the x-,y-, and z-axes, we weight them by wij and determine
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the corresponding rotation matrices Rx,Ry, and Rz at each fiber point. The
rotated points are again determined in two steps. First, the rotation is applied
to the vectors vij :

v′
ij = Rx(wijr1)Ry(wijr2)Rz(wijr3)vij (8)

Similar to the scaling transformation, the new positions of the fiber points
are then determined according to Equation 7. Examples of global and local
rotations are displayed in Figs. 1(c) and 1(f).

2.4.2 Cooling Schedule and Acceptance Probabilities

Denote the current iteration by iter and the maximum iteration number by
itermax. The perturbed fiber bundle Γ (F ) corresponds to a new energy Enew.
We keep track of the fiber bundle Fbest corresponding to the overall lowest
energy Ebest. The current temperature T is computed as

T (iter) = exp

(
−10

iter

itermax

)
. (9)

The corresponding cooling schedule is illustrated in Fig. 2. The probability p
of moving to the new state is computed as

p(T ) = exp

(
Eold − Enew

T

)
. (10)

If a random number r sampled from a uniform distribution over the interval
[0, 1] is smaller than p, the algorithm moves to the new state. Therefore, while
the cooling process takes place, the likelihood of moving to a state which
corresponds to a higher energy decreases. We always move to the new state if
Enew < Eold. The simulated annealing process is repeated in a coarse-to-fine
manner by using scale parameters of decreasing value σscale big, . . . , σscale small.

2.5 Optional Transformation Restrictions

We mentioned that the initial state of the simulated annealing approach is
given by a manual registration of the fiber bundle from the atlas onto the
diffusion tensor image of the patient. Our confidence in the exactness of the
manual registration result is likely to vary depending on the considered fiber
tract and brain region. Where the manual registration result is believed to be
correct, we may limit the effect of the transformation Γ on the current state
F : the new state is given by F within user-defined ROIs, whereas we smoothly
transition to Γ (F ) when moving away from these ROIs. For example, when
reconstructing the corticospinal tract, we keep the manual registration result
within the brainstem, or when reconstructing the optic tracts, we are generally
able to locate the optic chiasm and therefore do not allow transformations in
this region.
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Various transformations applied to an original fiber bundle displayed in orange. The
result of the transformation is displayed in light blue. The length of the straight orange
bundle in Fig. (d) is 80 mm, and the spacing between fibers is 1 mm. The top row shows
global transformations, while the bottom row shows local transformations with σscale = 40
mm. In detail: (a) Global translation using t = (4.5, 4.5, 0) mm. (b) Global scaling using
s = (1.4, 0.9, 0). (c) Global rotation using r = (0, 0,−30)◦. (d) Local translation using
t = (15, 0, 0) mm. (e) Local scaling using s = (1.4, 0.9, 0). The transformation is centered
where the fibers bend to the right. (f) Local rotation using r = (0, 0,−30)◦.

3 Results

We start by testing our algorithm on a DTI software phantom. The dataset
is generated using control points and cubic spline interpolation as described
in [3] and takes into account partial-volume artifacts between tensors. As
suggested by [8], we simulate Rician distributed image noise by computing
|IDW+Ñ(0, σnoise)|, where IDW is the diffusion-weighted signal and Ñ(0, σnoise)
is a Gaussian-distributed complex variable with mean 0 and standard devia-
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Fig. 2 The employed cooling schedule computed according to Equation 9. In this example,
itermax = 1000.

tion σnoise. Using standard fitting procedures, we compute the tensor-valued
image based on the diffusion-weighted images. Table 1 reports the default pa-
rameters used to generate the DTI software phantom and to reconstruct the
fiber bundle. Fig. 3 shows slices of the synthetic dataset in which the x-,y-,
and z-components of the main diffusion direction have been mapped to red,
green, and blue (RGB) color values, respectively. Figs. 3(a)-3(d) show various
stages of the fiber reconstruction process. In Fig. 3(e), a second fiber bundle
has been added to the synthetic dataset, resulting in a region of disc-shaped
tensors where the fibers cross. Due to noise, the main diffusion direction in
this region is basically random. The reconstruction result is very similar to
the previous one-bundle example, indicating robustness of the algorithm with
respect to fiber crossings. In Fig. 3(f), a tumor which is characterized by a low
mean diffusivity and cuts into the synthetic fiber bundle has been simulated.

In Fig. 4(a), we report the lowest energy values Ebest determined when re-
constructing the fiber bundle with different levels of image noise. The standard
deviation of the noise varies between 0 and 5.5 by increments of 0.5 (corre-
sponding SNR between +∞ and approximately 13), and for each standard
deviation value, the reconstruction is repeated 10 times. The initial energy
is approximately 0.3 for all experiments. In Fig. 4(b), we similarly vary the
number of iterations used to reconstruct the fiber bundle. These range from
25 to 300 by increments of 25.

Next, we consider the diffusion tensor images of two patients. These datasets
are publicly available from [11]. The parameters of the DTI acquisition se-
quence for the first patient are as follows: resolution = 1.80×1.80×1.98 mm3,
b value = 1000 s/mm2, NEX = 2, TR/TE = 10700/80 ms, two repetitions
with one b=0 image and 30 gradient directions each. The same parameters are
used for the second patient but with TE=84 ms. The first patient is affected
by intra-cerebral metastases. Reconstructions of part of the right corticospinal
tract, of the optic tracts, and of the left arcuate fasciculus are presented in
Fig. 5. Fig. 6 supports the claim that the transformed corticospinal tract bet-
ter matches the underlying tensor data. The second patient is affected by a
glioma. In Fig. 7, the part of the corticospinal tract originating from the hip
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Algorithm 1 Algorithm for atlas- and DTI-based fiber reconstruction

Require: the relevant fiber bundle F from the fiber atlas
Require: maximum iteration number itermax

Require: scale parameters [σscale big, . . . , σscale small]
Require: transformation magnitude parameters σtranslation, σscaling, σrotation
{Algorithm Start}
{Initialization}
perform manual affine registration of F onto I
Fbest ← F
Eold ← E(F, I)
Ebest ← E(F, I)
{Reconstruction Step}
for σscale ∈ [σscale big, . . . , σscale small] do

for iter = 1→ itermax do
select a transformation Γ between translation, scaling, and rotation
compute Γ (F ) according to Section 2.4.1
resample Γ (F ) with equidistant fiber points
{Compute corresponding energy}
Enew ← E(Γ (F ), I)
{Decide whether to move to the new state}
select random r from uniform distribution over [0, 1]
compute temperature T according to Eq. 9
compute probability p(T ) according to Eq. 10
if r < p then

F ← Γ (F )
Eold ← Enew
{Check whether it is the best}
if Enew < Ebest then

Fbest ← Γ (F )
Ebest ← Enew

end if
end if

end for
end for
return Fbest
{Algorithm End}

and leg area of the PCM has been reconstructed and is compared to a stream-
line tractography result seeded within the internal capsule.

Default value
noise standard deviation 2.5 (SNR=28)
radius of the bundle 13 mm
number of gradients 30
voxel size 1×1×1 mm3

b value 1000 s/mm2

noise-free b = 0 intensity 70
maximum iteration number 300
transformation scales [640, 320, 160, 80, 40] mm

Table 1 Default parameters used to generate the DTI software phantom and to reconstruct
the fiber bundle.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Reconstruction of a synthetic fiber bundle. The size of the image is 100 × 100× 40
mm3. (a) shows the fiber bundle initialization and a color-coding of the main diffusion
directions of the tensor field. (b), (c) and (d) show subsequent reconstruction results after
setting σscale = 640 mm, σscale = 320 mm, and σscale = 40 mm, respectively. (e) shows the
reconstruction result after a crossing fiber bundle has been added to the synthetic dataset.
In (f), a tumor which cuts into the synthetic fiber bundle has been simulated.
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Fig. 4 Values of the lowest energy value Ebest versus the standard deviation of the noise
corrupting the DTI software phantom (a) and versus the maximum iteration number (b).
The initial energy is approximately 0.3 for all experiments. The default parameters used to
generate the phantom are reported in Table 1.
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(a) (b)

(c)

Fig. 5 Reconstructions of the corticospinal tract (a) (hip and leg, hand, and face areas
of the PMC), of the optic tracts (b), and of the arcuate fasciculus (c) of a patient with
intra-cerebral metastases. The original fiber bundles from the fiber atlas are displayed in
orange, while the transformed bundles are displayed in light blue. One of the metastases is
shown in green.

4 Discussion

We have developed a method to map fiber bundles from a fiber atlas onto the
DTI dataset of a patient. To the best of our knowledge, it is the first method to
solve this specific problem. In the presented experiments, we start by perform-
ing a manual affine registration of the fiber bundles from the fiber atlas onto
the DTI dataset of a patient. This step may be simplified in the future by em-
ploying automatic brain registration methods such as [9]. Next, in Equation 3,
we formulate an energy functional to be minimized via a simulated annealing
procedure. The energy value corresponds to how well the transformed fiber
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(a) (b)

Fig. 6 The corticospinal fibers presented in Fig. 5(a) are displayed on top of the color-coded
diffusion tensor image before (a) and after (b) transformation.

bundle fits the underlying tensor data. Tensor values along the streamlines are
so far determined by using nearest neighbor interpolation, although a future
improvement could include linear or log-Euclidean [2] interpolation of the ten-
sor data. Our approach operates in a multi-scale manner: it starts by applying
global linear transformations to the fiber bundle, followed by more and more
local transformations. The possibility of choosing the various transformation
scales allows an elastic “registration” without running into over-fitting prob-
lems. Currently we perform a fixed number of iterations for each spatial scale.
For future improvement, the computation time may be reduced by advancing
to the next spatial scale when the energy decrease between successive itera-
tions is smaller than a predefined threshold. Also, the possibility of simulating
multiple cooldowns (instead of only one) at each spatial scale may be investi-
gated. The final (backward) transformation of the fiber bundle from the atlas
to the patient is given by a concatenation of linear operations applied to the
fiber points and the line segments connecting them. Therefore, the inverse
(forward) transformation from the patient to the atlas can be readily obtained
if we track the center, scale, and type of applied transformations. Some inac-
curacies in the forward transformation may arise due to the resampling, which
keeps the distance between fiber points constant.

Fig. 3 illustrates the ability of the algorithm to deal with regions of low
anisotropy (from either a fiber crossing or an infiltrating tumor) or with a tu-
mor region where diffusion is low. When dealing with a non-infiltrating tumor
(such as a metastasis), better results may be obtained by weighting the dif-
fusion tensors by their fractional anisotropy so that regions of low anisotropy
are severely penalized by the energy functional. In Fig. 4 we analyze the per-
formance of the suggested approach on synthetic data when varying the level
of image noise and the number of iterations. Because the energy functional
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(a) (b)

(c)

Fig. 7 (a) Reconstruction of the dominant part of the right corticospinal tract of a patient
with glioma by means of streamline FT seeded within the internal capsule. The glioma is
shown in green. Reconstruction via the proposed method is illustrated in (b) and (c). The
original fiber bundles from the fiber atlas are displayed in orange, while the transformed
bundles are displayed in light blue.

is computed globally on the whole fiber bundle, as expected the algorithm
performs well also in the presence of considerable image noise. Approximately
150 iterations appear to be sufficient to reconstruct the fiber bundle on the
given synthetic data. In Figs. 5 and 6, we present first reconstructions of the
corticospinal tract, optic tracts, and arcuate fasciculus of a patient with intra-
cerebral metastases. The optic tracts have been reconstructed simultaneously.
If the user is interested in the simultaneous mapping of fiber bundles which
vary considerably in size, it should be reasonable to weight the contributions
to the energy functional according to the size of the bundles. Otherwise, large-
scale transformations which provide a good fit for the larger bundles but not
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for the smaller bundles could be accepted. Compared to streamline tractogra-
phy approaches such as [5] and [17], the suggested approach does not require
the user to define seed- or exclude-ROIs. However, we make use of ROIs to
reduce the search space of possible transformations and reduce the risk of the
simulated annealing approach terminating in a local minimum. Fig. 7 illus-
trates the reconstruction of a corticospinal tract considerably displaced by a
glioma by means of our method. Visually the result is comparable to a re-
construction obtained by means of streamline FT seeded within the internal
capsule.

The approach by the authors of [16] automatically determines the anatom-
ical regions of the cortex to be used as start and end ROIs. This also leads
their algorithm to be sensitive to inter-subject variability, because boundaries
between regions may not necessarily be in the same position in different indi-
viduals. By relying on streamline FT, additional ROIs may still be needed to
resolve crossing fibers or to eliminate fibers which continue into other path-
ways terminating into the same region. These operations are not needed with
our algorithm. [18] presents a manually segmented white matter parcellation
map which can be registered onto the DTI of a patient. Although very useful
for anatomical orientation, the atlas can only provide a coarse fiber recon-
struction, because often, only parts of fiber bundles could be delineated on
the color-coded orientation map. In [23,24], a DTI atlas is registered onto the
DTI of a patient together with the binary mask derived from tracked stream-
lines. This appears to be a viable alternative for tract reconstruction without
the need of user defined ROIs, however, it is restricted to non-branching sheet-
like structures that can be effectively modeled by medial representations and
may not be adequate to reconstruct fiber bundles which are considerably dis-
placed due to lesions. Comparing the computational expense, we expect our
algorithm to be faster: while the reconstructions presented in this paper took
approximately 30 minutes to compute, the elastic registration of DTIs can
be computationally quite expensive (compare [4]). Moreover, the effect of the
transformation on the registered tensors poses a modeling challenge: while it
is generally accepted that a rotation of the image leads to a rotation of the
tensors (see [1]) it is not as clear what the effect of scaling or shearing the
image should be. On the contrary, with our approach, we simply apply the
transformation to the streamline defining points and interpolate them accord-
ingly.

The employed fiber atlas is based on the data of a single subject. It would be
interesting to create fiber atlases based on the tracked fiber bundles of multiple
subjects, possibly grouped according to specific diseases. These atlases could
consist either of averaged fiber bundles (the fiber bundle minimizing one of the
distances between fiber bundles suggested by [12] could be determined) or of a
map indicating the probability of a tract being in a specific location. With the
latter option, a fiber tract could be reconstructed by considering its likelihood
and the agreement of its trajectory with the diffusion data. The flexibility of
the suggested approach could be increased by allowing the generation and the
removal of streamlines. This would lead to a fiber tracking algorithm based
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on global optimization, thus related to the work by [7] and [20] but without
the need of generating fibers from a “soup of fragments”, as prior knowledge
about the expected shape of fibers can be incorporated. A preliminary step
in this direction would probably consist in reformulating the problem in a
continuous framework which starts from the definition of a streamline (a line
whose tangent is always parallel to the vector field) and where the energy
term considers both how well a streamline fits the underlying tensor data
and how distant the streamline is from the atlas bundle. In the short term,
if there is a considerable difference between the fiber bundles of the atlas
and the patient, a landmark-based, thin-plate spline registration [21] could
be used to initialize the simulated annealing process. Future work will also
focus on applying the proposed method to High Angular Resolution Diffusion
Imaging (HARDI, see [13, Chapter 4] for an overview), where in each voxel
the probability that a diffusing water molecule moves in a particular direction
is given by a probability density function sampled on the sphere. The energy
functional will need to be modified to consider this probability (in the direction
of the different vectors defining the streamlines) instead of the current vector
norm defined by the diffusion tensor.

In conclusion, our hope is that this work may serve as a proof of concept
for fiber reconstruction methods which map fiber bundles based on diffusion
tensor data and which are not as sensitive to ROI placement as standard
streamline tractography and will simplify inter-subject comparisons.
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12. Jiao, F., Phillips, J., Stinstra, J., Krüger, J., Varma, R., Hsu, E., Korenberg, J., Johnson,

C.: Metrics for uncertainty analysis and visualization of diffusion tensor images. Lecture
Notes in Computer Science 6326, 179–190 (2010)

13. Johansen-Berg, H., Behrens, T.: Diffusion MRI. Academic Press, London, U.K. (2009)
14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-

ence 220(4598), 671–680 (1983)
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