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Abstract—In this work, we present a model to simulate the growth of glioblastomas multiforma which takes into account both the
varying volume of the tumor and its mechanical interaction with the brain parenchyma. Because these tumors grow preferentially
along white matter fiber bundles, a tumor-invaded diffusion tensor field is simulated at the different stages of tumor development. This
allows us to make a quantitative analysis about the error of fiber tracking algorithms in the presence of infiltrated tissue. Based upon
the gained knowledge, we color code the segmentation of the glioma of a patient in order to visualize the uncertainty about regions
containing important fiber bundles which fiber tracking algorithms may fail to reconstruct.
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1 INTRODUCTION

Diffusion Tensor Imaging (DTI) models the anisotropic diffusion of
water molecules as a 0-mean normal distribution, whose covariance
matrix is given by the second order diffusion tensor [5, 29, 31]. In
white matter we assume that the eigenvector associated with the largest
eigenvalue of the tensor, i.e. the main diffusion direction, matches the
direction of the underlying fiber bundles. Fiber tracking (FT) algo-
rithms make use of this property to reconstruct neural pathways from
the diffusion tensor field [4, 28, 30]. Since for patient data the true
extent of fiber bundles is unknown, software or hardware phantoms
represent an important tool to validate FT algorithms [13, 16, 27].

In this work we analyze the precision of FT algorithms in the pres-
ence of glioblastomas multiforma (GBM), the most common primary
brain tumor in adults [32]. To this end, we make use of the DTI data
of a healthy volunteer on which we simulate the growth of a tumor.
We model both white matter infiltration and the deformation of brain
parenchyma. This way, we are able to simulate the local displacement
of fiber bundles caused by tumor expansion and compare the displaced
fibers with others tracked on the basis of a tumor-invaded tensor field.
Based on this analysis, we determine the characteristics of voxels in
which FT algorithms may fail to reconstruct fibers of interest and vi-
sualize this uncertainty on patient data.

1.1 Related Work
Several approaches have been proposed to mathematically describe
the growth of tumors, which may be subdivided according to the spa-
tial scale they operate on. A first class of algorithms simulates tumor
growth at the cellular level (cellular automata), whereas a second class
of algorithms predicts the evolution of tumor density at a macroscopic
scale, generally by making use of partial differential equations (PDEs).
Although cellular automata approaches have been proposed for differ-
ent tumors including GBMs (see [12, 19, 20, 21]) since we are inter-
ested in the macroscopic effects that tumor growth has on diffusion
tensor imaging and not in the specific spatial ordering of tumor cells,
we choose to focus on PDE based methods.

Among PDE based methods Li et al. [26] suggest a model that ac-
counts for cell-proliferation and apoptosis. Cristini et al. [9] simulate
the growth, neo-vascularization and infiltration of malignant gliomas.
Clatz et al. [7] take into account both white matter infiltration and the
mechanical deformation of the invaded structures. The patient’s T1
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and T2 images are registered to the Brainweb atlas [6] to take into
account tissue properties and to a DTI atlas to take into account the
preferential growth direction of GBMs along white matter fibers [32].
The approach subdivides the gross tumor volumes (GTVs, see [22])
into GTV1, the non-infiltrating component associated with volume in-
crease and tissue deformation, and GTV2, the diffusion component
associated with fast expansion and infiltration but smaller mass-effect.

We are especially interested in the effect of tumor growth on FT ac-
curacy. In [3, 34] it has been shown using software phantoms that FT
algorithms may consistently underestimate the spatial extent of fiber
bundles with an error in the order of 5 mm. In [23] electrical stimu-
lation was used in tumor patients to demonstrated that FT algorithms
do not determine the correct size of fiber bundles. However, to the
best of our knowledge, no quantitative analysis of FT accuracy in the
presence of infiltrating tumors has been presented yet.

1.2 Contributions
The main contributions of this paper may be summarized as follows:

• We propose a novel tumor growth simulation model which cou-
ples two PDEs that describe the increase in tumor volume and
the deformation of brain tissue

• We use patient specific DTI data and white and grey matter seg-
mentations

• We realistically simulate the effect of tumor growth on the un-
derlying DTI data

• We analyze the effect of infiltrated tissue on the precision of a
deterministic FT algorithm

• Results of our analysis are used to color code the segmentation
of the glioma of a patient, in order to determine areas which have
a high risk of containing fibers which the FT algorithm may fail
to reconstruct

2 METHODS

Our method to simulate GBM growth is inspired by the work presented
in [7], upon which we expand and propose a novel approach to cou-
pling the PDEs that describe tumor invasion in the brain parenchyma
and mechanical deformation of brain tissue (mass effect). Based on
the T1 data of a healthy subject, we begin by segmenting the white
and grey matter regions via a watershed-based algorithm [17]. Manual
rigid registration is then used to align the T1 image and the segmented
regions to the DTI data of the subject (specifically to the b0 image).

2.1 Tumor Growth Model
In order create the artificial tumor, we start by initializing the normal-
ized tumor cell density function c : Ω → [0,1] where Ω is the image
domain. This function may be used to compute the true cell density in



a voxel via multiplication with the carrying capacity constant Cmax,
estimated to be approximately 3.5 ·104 cells/mm3 [11, 35]. Given the
center of the tumor x0, we initialize c by computing

c(x) =
1

1+‖x− x0‖2 (1)

where ‖ · ‖ is the euclidean norm.
While the tumor grows, the evolution of the density function c may

be described via the sum of an anisotropic diffusion term which de-
pends on the diffusivity of the underlying tissue and a cell proliferation
term:

∂c
∂ t

= div(D∇c)︸ ︷︷ ︸
anisotropic diffusion

+ ρc︸︷︷︸
source term

. (2)

Here D is the diffusion tensor reconstructed at each voxel and ρ is a
parameter which depends on the aggressiveness of the tumor. In our
experiments we set ρ = 0.77/day, which leads to the simulation of a
very quickly growing tumor.

Via a second PDE we model the mechanical deformation of brain
tissue caused by tumor growth:

div(σ)− γ ∇c = 0 (3)

where σ is the stress tensor and γ is a scaling factor for the pressure
applied on the tissue by the growing tumor. The deformation force acts
in the direction opposite to the gradient of the tumor density function.
The stress tensor σ depends on the local displacement u : Ω → R3

and on the tissue dependent Lamé parameters λ and µ . In the brain
regions where we allow for tissue displacement, i.e. white and grey
matter, we use λ = 991.43 Pa and µ = 247.86 Pa, which may be nor-
malized to λ = 1.0 Pa and µ = 0.25 Pa. The coupling factor γ is set to
1.0. We do not explicitly compute σ but solve instead the elastostatic
equation, i.e. we find u such that all forces acting on the brain tissue
sum up to zero. Assuming the tissue to be locally isotropic (the de-
formation magnitude does not depend on the direction of the applied
force) and homogeneous the equilibrium equations may be explicitly
derived [33]:

0 = (λ +µ)(u1xx +u2xy +u3xz)+µ(u1xx +u1yy +u1zz)− γcx

0 = (λ +µ)(u1xy +u2yy +u3yz)+µ(u2xx +u2yy +u2zz)− γcy

0 = (λ +µ)(u1xz +u2yz +u3zz)+µ(u3xx +u3yy +u3zz)− γcz (4)

which may also be expressed in vector notation as

0 = (λ +µ)∇(∇ ·u)+µ∇2u− γ∇c . (5)

After introducing an artificial time variable T , Eq. 5 may be solved as
the steady state in time of

∂u
∂T

= (λ +µ)∇(∇ ·u)+µ∇2u− γ∇c . (6)

2.2 PDE Coupling and Discretization
We thus need to solve the coupled PDEs 2 and 6 with c and u set to 0
at the boundary of white and grey matter. We do this by approximat-
ing each partial derivative via finite differences and by employing an
explicit gradient descent algorithm. For example, the time derivative
in Eq. 2 will be approximated via

ci+1 − ci

∆t
= div(D∇c)+ρc (7)

where i indicates the iteration number and ∆t is the time step (we use
∆t = 0.2 days). This leads to the iterative scheme

ci+1 = ci +∆t · (div(D∇c)+ρc) . (8)

Equation 6 is solved analogously. In order to couple the two PDEs
after each update to the tumor cell density function c we iteratively

solve Eq. 6 to find the resulting displacement field and apply it to the
diffusion tensor image. While doing this, we need to not only shift the
single diffusion tensors according to u but also to appropriately reori-
ent the main diffusion directions. The local transformation at position
x is given by Jx+u, the Jacobi matrix of x+u(x). The new tensor Di+1

at position x+u(x) is then computed via

Di+1(x+u(x)) = Jx+u Di(x) J−1
x+u . (9)

This way, both the rotation and shearing of tensors are taken into ac-
count. However, in our experiments, considering only the rotational
component of Jx+u led to results appearing visually more realistic. We
therefore approximate Jx+u by means of the orthonormal matrix Q ob-
tained via its QR decomposition [14, 15, 25] and J−1

x+u via the transpose
of Q.

In Fig. 1 we present an illustrative example of the need for tensor
reorientation in 2D. Consider applying the displacement field

u(x) =
(

x1 cosθ − x2 sinθ − x1
x1 sinθ + x2 cosθ − x2

)
(10)

(which correspond to a global counterclockwise rotation by an angle
θ ) to the tensor schematized in Fig. 1(a). Simply shifting the center
of the tensor leads to the configuration depicted in Fig. 1(b). Finally,
since

Jx+u =

(
cosθ −sinθ
sinθ cosθ

)
, (11)

we rotate D according to Eq. 9 and obtain the result displayed in
Fig. 1(c).

(a) (b) (c)

Fig. 1. (a) Schematic initial tensor configuration. (b) Application of the displace-
ment field to the tensor without reorientation of the main diffusion direction. (c)
Reorientation of the tensor by means of the Jacobi matrix.

Once we have applied the displacement field to the diffusion tensors
and reoriented them, many tensors will likely not be centered on the
image grid and we therefore need to solve a scattered data interpolation
problem [1, 10]. For each voxel, we consider the set of displaced
tensors {D j} with a distance d j from the center xo of the voxel which
is smaller than a predefined radius R. Each of these tensors is then
weighted according to an inverse square (Shepard) weighting function:

w(d j;R) =
(

1
d j

− 1
R

)2
(12)

In our experiments R is initially chosen to be slightly smaller than the
edge of a voxel but is arbitrarily increased if no displaced tensors are
found. The interpolated tensor is computed via Log-Euclidean inter-
polation [2]:

D(xo) = exp
(

∑ j w(d j;R) log(D j)

∑ j w(d j;R)

)
(13)

where exp and log indicate the matrix exponential and logarithm, re-
spectively. Finally, if the tumor cell density c(xo) at the voxel xo is pos-
itive, we additionally interpolate D(xo) with an isotropic tensor which
models the diffusivity inside the tumor. Based on measurements on
patient data, we set the eigenvalues of the isotropic tensor equal to
0.001 mm2/s. For the interpolation, the isotropic tensor is weighted
by c(xo) whereas D(xo) is weighted by 1− c(xo).



2.3 Summary of the Tumor Growth Algorithm
In this section, we briefly summarize how we solve the PDEs which
simultaneously describe the tumor invasion in the brain parenchyma
and its mechanical deformation.

{Algorithm Start}
Initialize c according to Eq. 1
for i = 1 : fixed number of iterations do

Update c according to Eq. 2
repeat

Update u according to Eq. 6 via an explicit gradient descent
algorithm

until ‖uk+1 −uk‖< ε
Apply the displacement field to the tensor data and reorient ac-
cording to Eq. 9
Interpolate the tensor data on the image grid according to Eq. 13
Interpolate with an isotropic tensor in voxels where c is positive

end for
{Algorithm End}

To reduce numerical errors, one may also keep track of the displace-
ment fields computed for each ci and apply their sum to the original
tensor data instead of iteratively applying them to the tensor field.

2.4 Uncertainty Analysis
In order to analyze how tumor growth affects the accuracy of fiber
tracking we start by simulating different stages of tumor growth on
the DTI data of a healthy subject. At each time-point i, we perform
the tracking of a specific fiber bundle near the lesion, based on the
modified DTI data and obtain a set of fiber bundles {Fi}. In our exper-
iments we use whole-brain fiber-tracking [8] and select the fibers that
go through regions of interest. The whole-brain tracking approach
is chosen for its superior reconstruction capabilities, see for exam-
ple [24]. Details about the employed deterministic fiber tracking al-
gorithm can be found in [3]. Next, we perform a tracking of the same
fiber bundle based on the DTI data without tumor. We then apply
the total displacement field at time-point i to the these tracked fibers
and discard fibers that go through voxels which at time-point i are
completely occupied by tumor cells, since we assume that these fibers
have been destroyed by the tumor. We consider this second set of fiber
bundles {Ti} as the ground truth to compare against. We represent
the fiber bundles as sets of points and compare them by means of the
Hausdorff distance:

dH(Fi,Ti) = max
(

max
x∈Fi

min
y∈Ti

‖x− y‖,max
y∈Ti

min
x∈Fi

‖x− y‖
)
. (14)

Further, we analyze the fractional anisotropy of voxels which are
pierced by fibers in Ti but not in Fi. We derive the distribution of FA
values in these particular voxels and use it to color code the T1 data of
a GBM patient. The color coding may be used to evaluate the risk that
fiber bundles of interest go through regions infiltrated by the tumor.

3 RESULTS

We simulate an infiltrating tumor near the corticospinal tract of a
healthy subject at the level of the corona radiata. The parame-
ters of the DTI acquisition sequence are as follows: resolution =
1.80× 1.80× 1.98 mm3, b value = 1000 s/mm2, NEX = 2, TR/TE
= 12000/84 ms, number of DW images = 62 (2 b0). Figs. 2(a)-2(f)
show tracking results after 0,1,3,5,7, and 9 iterations. Figs. 2(g)-2(i)
show details of corresponding tensor fields in proximity of the simu-
lated tumor.

In Fig. 3 we plot the computed Hausdorff distances (see Section 2.4
for details) vs. the volume of the tumor at the various stages of de-
velopment. In Fig. 4 we present a histogram of FA values in voxels
near the tumor where the deflection based FT algorithm failed to re-
construct fibers that were present in the considered ground truth. This
histogram is used to generate an appropriate color coding for the GBM
segmentation of a patient. This dataset is publicly available from the

Fig. 3. The computed Hausdorff distances vs. the volume of the simulated GBM.

Fig. 4. Histogram of FA values in voxels near the tumor where the deflection
based FT algorithm failed to reconstruct fibers that were present in the considered
ground truth.

website [18]. The parameters of the DTI acquisition sequence are as
follows: resolution = 1.80×1.80×1.98 mm3, b value = 1000 s/mm2,
NEX = 2, TR/TE = 10700/84 ms, number of DW images = 62 (2 b0).
In Fig. 5 voxels whose FA value indicates a high likelihood to contain
fibers that may remain undetected by the fiber tracking algorithm are
displayed in red, whereas voxels with a lower likelihood are displayed
in yellow.

4 DISCUSSION AND CONCLUSIONS

We have simulated the growth of a GBM starting from imaging data
of a healthy volunteer. Compared to the approach presented in [7]
we employ the subject’s specific DTI data and segmentations of white
and grey matter instead of registering to a common atlas. Moreover,
we couple the PDEs that describe tumor growth and mass effect by it-
eratively updating the tumor invaded tensor field. This has allowed us
to give a first quantitative indication about the error of FT algorithms
in the presence of infiltrated tissue. The data presented in Fig. 3 in-
dicates an error of a few millimeters in the presence of small tumors
and of up to 8 mm in the presence of larger tumors. More experiments
are needed in order to confirm this initial data. Important parameters
which shall be systematically varied in future work include the aggres-
siveness of the tumor, the specific fiber tract affected by the tumor and
the position of the tumor with respect to the tract. We shall also vary
the imaging parameters used to acquire the initial data of the healthy
volunteer.

The histogram in Fig. 4 indicates that voxels in infiltrated white
matter presenting FA values between 0.2 and 0.7 have a high likeli-
hood of containing fibers of interest which the FT algorithm may fail



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. The red fibers are the result of whole-brain deflection-based FT using a region of interest within the internal capsule to single out the corticospinal tract. The
simulated GBM is shown in green, after (a) 0 iterations, volume = 0 mm3, (b) 1 iterations, volume = 953 mm3, (c) 3 iterations, volume = 1445 mm3, (d) 5 iterations,
volume = 1905 mm3, (e) 7 iterations, volume = 2480 mm3, (f) 9 iterations, volume = 2896 mm3. (g),(h),(i) show details of corresponding tensor fields in proximity of the
simulated tumor after 0,5, and 9 iterations respectively.

to reconstruct. Based upon this result, we have color coded the seg-
mentation of the glioma of a patient, see Fig. 5. Additional experi-
ments shall increase the accuracy of the histogram. An option which
we will explore in the future is to visualize this uncertainty in 3D on or
around the tracked fibers. In the end, we hope that the presented color
coded segmentations may offer clinicians an additional clue about the
uncertainty in regions which may potentially contain fiber bundles that
need to be preserved.
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