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ABSTRACT

Fiber tracking (FT) and quantification algorithms are approximations of reality due to limited spatial resolution,
model assumptions, user-defined parameter settings, and physical imaging artifacts resulting from diffusion
sequences. Until now, correctness, plausibility, and reliability of both FT and quantification techniques have
mainly been verified using histologic knowledge and software or hardware phantoms. Probabilistic FT approaches
aim at visualizing the uncertainty present in the data by incorporating models of the acquisition process and
noise. The uncertainty is assessed by tracking many possible paths originating from a single seed point, thereby
taking the tensor uncertainty into account. Based on the tracked paths, maps of connectivity probabilities can be
produced, which may be used to delineate risk structures for presurgical planning. In this paper, we explore the
advantages and disadvantages of probabilistic approaches compared to deterministic algorithms and give both
qualitative and quantitative comparisons based on clinical data. We focus on two important clinical applications,
namely, on the reconstruction of fiber bundles within the proximity of tumors and on the quantitative analysis
of diffusion parameters along fiber bundles. Our results show that probabilistic FT is superior and suitable
for a better reconstruction at the borders of anatomical structures and is significantly more sensitive than the
deterministic approach for quantification purposes. Furthermore, we demonstrate that an alternative tracking
approach, called variational noise tracking, is qualitatively comparable with a standard probabilistic method,
but is computationally less expensive, thus, enhancing its appeal for clinical applications.
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1. INTRODUCTION

Over the last years, diffusion imaging techniques like DTI,1,2 DSI or Q-Ball3 received increasing attention, espe-
cially in the neuroimaging, neurological, and neurosurgical4 community. An explicit geometrical reconstruction
of major white matter tracts has become available by fiber tracking (FT) based on diffusion-weighted images.
The goal of virtually all FT algorithms is to compute results which are analogous to what the physicians or radiol-
ogists are expecting and an extensive amount of research has therefore been focussed on this reconstruction.1–3,5

GPU implementations6–8 are able to decrease the computation time by an order of magnitude.

In practice, the interesting structures are not individual fibers, which in any case are impossible to reconstruct
since the resolution of diffusion-weighted images is much lower than the diameter of the individual fibers. Instead,
the interesting structures are anatomical meaningful bundles that fibers form.

The possibility of FT and the quantification of diffusion parameters has established an abundance of new
clinically useful applications and research studies that focus on monitoring the progression of diseases such as
amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS),9 establishing surrogate markers used in assessing
the grade of brain tumors,10 or initiating therapies to ensure the best possible development of children.11 Several
studies have shown that modified values of fractional anisotropy (FA), relative anisotropy, or diffusion strength
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(ADC) are indicators of diseases that affect white matter tissue. MS lesions have been investigated by ROI-
based analysis and voxel-wise FA comparisons by which FA changes have been shown to occur in areas containing
lesions and in areas of normal-appearing white matter. Moreover, methods for tract-based quantification have
been developed for which parameters are computed depending on the local curvature or geodesic distance from
a user-defined origin. These methods allow to automatically determine DTI-derived parameters along fiber
bundles and have already been used to mirror disease progression and executive function in MS.12 Probabilistic
methods5 allow for tracking in regions of low anisotropy and are also used to provide a quantitative measure of
the probability of the existence of a connection between two regions. These approaches aim at visualizing the
uncertainty present in the data by incorporating models of the acquisition process and noise. The uncertainty is
assessed by tracking many possible paths originating from a single seed point and by taking the tensor uncertainty
into account. Session reproducibility and subject variability of FT algorithms have been examined in.13 A first
comparison of deterministic and probabilistic approaches, both guided solely by the primary eigenvector, in
combination with functional localization of brain tumor patients has been given in.14 However, no qualitative
or quantitative tract-based results of a comparison have been given, on which this paper focuses.

1.1 Contributions

The new contributions of this paper can be summarized as follows:

• The uncertainty in diffusion imaging with respect to fiber tracking and quantification results has been
evaluated by comparing different probabilistic and deterministic approaches.

• To the best of our knowledge, all proposed algorithms have been implemented for the first time using one
software platform. This gives us the full control over all parameters and constitutes the basis for a fair
comparison.

• We performed an integrated examination and comparison of the algorithms, namely, both qualitative and
quantitative comparisons.

• We examined specific clinical issues such as the behavior of algorithms in the vicinity of tumors or lesions
and have examined more than solely whether probabilistic tracking approaches are better in the area of
kissing or crossing fibers. Our strong cooperation with clinical partners permits a rigorous evaluation and
verification of our results.

• For clinically relevant cases, we have shown that probabilistic tracking is superior and suitable for a
better reconstruction at the borders of anatomical structures. For quantification, the probabilistic FT
is significantly more sensitive than the deterministic approach.

2. METHODS

To examine the uncertainty associated with FT and tract-based quantification, we focus on two patient groups:
glioma patients and MS patients. Whereas tumors can infiltrate or displace white matter fiber tracts, MS
lesions do not necessarily influence the localization or structure of axonal fibers. Rather, MS lesions and the
corresponding de- and remyelinization may influence the diffusion parameters along the fibers.12 Thus, for both
groups, we perform FT of bundles of interest, i.e., bundles near the tumor or bundles which can be influenced
by lesions. In the case of tumor patients, we mainly focused on qualitative comparisons and visually compared
the results in order to assess the differences. Furthermore, we determined the volume of a sheath which wraps
the fibers in order to estimate the differences. For the MS patients, we also performed a quantification of several
DTI parameters along the tracked bundles.

2.1 Image data

For the quantitative analysis, magnetic resonance images of relapsing-remitting MS patients and healthy controls
(10 patients, 10 healthy volunteers) were obtained using a 1.5T scanner (Siemens Avanto, Erlangen, Germany).
The subjects were supine and a head coil with a circularly polarized array was used with 2D DTI echo planar
imaging, 30 diffusion directions and 2 repetitions. The sequence parameters were: repetition time (TR) 8000



msec, echo time (TE) 100 msec, field of view (FOV) 230 mm, voxel size 2.0 × 2.0 × 2.7mm3, 55 slices, and a
scanning time of 8 minutes. Autoshimming and phase correction were activated.

For the qualitative analysis, magnetic resonance images of tumor patients were obtained using a 3T scanner
(Siemens Trio, Erlangen, Germany). The subjects were supine and a head coil with a circularly polarized
array was used with 2D DTI echo planar imaging, 12 diffusion directions and 5 repetitions. The sequence
parameters were: repetition time (TR) 6400 msec, echo time (TE) 91 msec, field of view (FOV) 240 mm, voxel
size 2.5 × 2.5 × 2.5mm3 , 50 slices, and scanning time of 8 minutes. Autoshimming and phase correction were
activated.

2.2 Probabilistic and deterministic fiber tracking

In the following, we briefly describe the FT algorithms implemented in MeVisLab, our research and development
platform.15

2.2.1 Probabilistic fiber tracking using a Bayesian approach

Our Bayesian approach5 is well-studied and has been used by several other authors, such as.16 Thus, this
approach is our first choice for probabilistic FT. The necessary modeling and estimation of fiber orientation and
connection can be described at both global and local levels. At the global level, a theoretical foundation for
estimating the probability of a connection between two areas in the brain has been given. At the local level,
probability density functions of the fiber orientation can be derived in a theoretically justified way via Bayes’
theorem. In addition, a theorem has been integrated that facilitates the estimation of parameters in a constrained
version of the popular tensor model of water diffusion.

2.2.2 Probabilistic fiber tracking using variational noise

Although we have fully parallelized the Bayesian approach, its high computation time inhibits use in routine
clinical tasks. Thus, we propose another novel approach for FT similar to bootstrapping methods,17,18 but
which is faster and does not need several repetitions of the diffusion-weighted images. The new method, which
we have named variational noise FT, allows an efficient computation of diffusion-weighted images with user-
defined noise while retaining the MRI noise characteristics. The essential idea is to add complex Gaussian noise
to the magnitude images19 and to track the fibers for each artificially computed diffusion-weighted data set.

For a fair comparison between both probabilistic approaches, the noise of the diffusion-weighted images used
for the Bayesian method should match the noise of the images computed by the variational noise technique. In
the following, we assume a high SNR so that the noise tends to be Gaussian distributed. If Nbay repetitions of
each diffusion-weighted image are used to compute one average image for the Bayesian FT, then the variance of
this image is σ2/Nbay where σ defines the noise of one single image. Furthermore, if Nvar > Nbay repetitions
of each diffusion-weighted image with noise σ are used to compute the image to which variational noise σvar is
added, then the variance of an output image of the variational noise technique is σ2/Nvar + σ2

var. Consequently,
we can compute the noise σvar:

σ2

Nbay
=

σ2

Nvar
+ σ2

var ⇒ σvar = σ

√
Nvar − Nbay

NvarNbay
. (1)

2.2.3 Deterministic fiber tracking

The deterministic FT algorithm which we use20 to compare with both probabilistic approaches is based on the
deflection-based approach by Weinstein et al.21 and makes use of the full diffusion tensor information during
tracking. In contrast, commonly employed streamline-based algorithms, such as the FACT (fiber assignment by
continuous tracking) method,1 only consider the largest eigenvector representing the main diffusion direction. In
comparison to the method described in,21 we added a novel moving average estimation of the fiber curvature and
anisotropy to the tracking algorithm, which led to more accurate tracking dynamics and more robust termination
criteria.



Figure 1. Qualitative comparisons of fiber tracking for two glioma patients. We tracked two important structures, the
pyramidal tract and the optical tract. Patient 1: frontotemporal glioma (grade 4), patient 2: progressive astrocytoma
(grade 2).

2.3 Qualitative comparisons of fiber tracking (glioma patients)

From a large pool of data sets of glioma patients, we selected some patients for a qualitative comparison. All
selected patients have progressive gliomas (grade 4) or progressive astrocytomas (grade 2) next to the pyramidal
and the optical tracts. To track the pyramidal tracts, seed regions within the capsula interna were chosen, while
for tracking the optical tracts, seed regions in the occipital lobe were used. In all cases, exclusion ROIs (regions
of interest) were used to discard unwanted fibers. Moreover, we propose to measure the volume of the sheath
that encloses the single fiber tracts. To compute the sheath, we propose a neighboring cells algorithm based on
the well-known marching cubes algorithm with which a volume (image) is scanned by discretization into cells.
The necessary input volume is determined by voxelizing the 3D fiber tracts.

2.4 Quantitative comparisons of fiber tracking (multiple sclerosis patients)

We have tested both the deterministic and the probabilistic FT (Bayesian) to determine whether and how they
allow the detection of differences of diffusion-derived parameters between relapsing-remitting MS patients and
healthy controls (10 patients, 10 healthy volunteers). For that purpose, we decided to quantify the superior
longitudinal fasciculus (SLF) which has already been shown to be a structure for which differences between
MS patients and healthy volunteers can be determined very well using deterministic FT.12 After extracting the
right and left SLF, diffusion-derived parameters such as the FA, axial diffusivity, radial diffusivity, and diffusion
strength were obtained along the tracts, and average values were computed. Then these values were recoded
linearly to better permit statistical examination. For extracting the SLFs, only fiber tracts were considered which
were included by two crop ROIs and values were only computed between those two crop ROIs. More precisely,
each fiber is resampled so that all fibers consist of n equidistantly distributed fiber points. Using the resampled
fibers, an average center line is computed, used to determine n reference planes depending on the local curvature
of the center line. Afterwards, a reference plane is used to determine an average diffusion value at a certain
position of the bundle by considering one diffusion value per fiber with the nearest distance to that plane.

The number of fibers of the probabilistic tracking has been aligned with the number of fibers of the deter-
ministic tracking. This process occurs before the tracked structure has been cropped to the focus of interest in
the SLF to ensure a valid comparison of the parameters after cropping. Furthermore, common parameters such
as minimal FA must be adjusted for both algorithms.



Figure 2. Tracking results of two further glioma patients. The optical tract of patient 4 could not be tracked by any
algorithm due to the large tumor. Patient 3: progressive glioma (grade 4), patient 4: glioma (grade 4).

3. RESULTS

3.1 Qualitative results
Some of the qualitative results can be found in Fig. 1 and Fig. 2. In nearly all cases, both probabilistic approaches
are superior to the deterministic algorithm. In particular, fibers at the marginal regions of the white matter are
more precisely tracked if the probabilistic algorithms are used (patient 1, 2, and 4). Consequently, the sheath
volumes differ substantially for the different algorithms (probabilistic results are about 30% higher on average).
The differences between the variational noise tracking approach and the Bayesian approach are very small for
all patients. There is only one outlier, namely, the pyramidal tract of patient 1, where the Bayesian FT is able
to track fibers more lateral which could probably be prevented by adapting the two slightly different stopping
techniques.

3.2 Quantitative results
The quantitative results can be found in Tab. 1 and Tab. 2 (appendix). In two of the MS cases, fiber tracts could
not be determined between both crop ROIs by the deterministic approach. Thus, these two cases were discarded.
We used analysis of variance (ANOVA) through GLM (general linear model) for repeated measurements to
analyze the sensitivity of the deterministic and the probabilistic method for pathological alterations in the MS
patients. The FA and ADC values of the SLF left and the SLF right were used as dependent variables. The
patient versus healthy control status is used as independent variable (between-subject factor), the hemisphere
and the type of algorithm (deterministic/probabilistic) as within-subject factors. For the ADC values, there
is a main effect for the cerebral hemisphere [F(1,16): 11.027, p < 0.01], a main effect for the algorithm used
(deterministic vs. probabilistic) [F(1,16): 4.444, p = 0.05] and a significant interaction between algorithm used
and patient groups [F(1,16): 4.444, p = 0.05]. Moreover, the independent group factor is also significant [F(1,17):
12.085, p < 0.01].

Patients had higher ADC values than healthy controls (3.625 vs. 2.25), right hemisphere ADC values are
higher than left hemisphere ADC values (3.194 vs. 2.681), in healthy controls the ADC values did not differ
between deterministic and probabilistic algorithm (2.25 vs. 2.25), but in patients the probabilistic model yielded
higher values than the deterministic algorithm (3.75 vs. 3.5) (compare Fig. 3). Note that these values are not
the empiric data itself, but estimated marginal means, thus error-corrected values based on our empiric data.



Figure 3. Estimated marginal means (ADC values).

For the FA values, the only significant effect is a main effect for the cerebral hemisphere [F(1,16): 5.47, p =
0.03].

The number of fibers after the cropping varies widely not only between different persons, but also between
hemispheres of the same brain. Statistics show that the probabilistic algorithm tracks an average of 254 fibers
(SD=199), whereas the deterministic algorithm tracks an average of 188 fibers (SD=167). The standard deviation
is high, that it seems impossible to interpret these results at first glance. However, the correlation between the
probabilistically and deterministically gained numbers of fibers, found by Pearson test to be 0.89, shows that the
trend between the algorithms is congruent. This indicates that the variance of the number of fibers is not due
to the type of algorithm or chance, but primarily due to the underlying image data. Additionally, this highly
variant but congruent trend indicates a high sensibility towards inter-individual differences in image data and
demonstrates reliable algorithms.

4. CONCLUSIONS AND FUTURE WORK

Our qualitative results have shown that both probabilistic approaches are superior for tracking fibers near tumors
or MS lesions with respect to completeness, quality and coverage of anatomical structures at their borders. Under
the condition that all approaches are parameterized so that they track the same initial number of fibers, the
probabilistic approaches are able to compute more fibers that pass two distant crop ROIs, indicating that fewer
fibers were aborted during the fiber tracking process. The variational noise fiber tracking produces qualitatively
very similar results compared to the Bayesian approach, but is computationally less expensive, thus, enhancing
its appeal for clinical applications.

The quantitative results in combination with the qualitative results have shown that the probabilistic fiber
tracking is more sensitive than the deterministic approach, especially if measuring the ADC values. The sta-
tistically significant interaction effect for ADC values between the algorithm used (probabilistic/deterministic)
and the health status can be seen in Fig. 3. This interaction effect results from the fact that on one level of
the between-subjects factor (healthy volunteers) the algorithm used has no influence on the ADC scores, on the
other level (patients) it influences the values. One can interpret this effect as a brain anatomy related effect of
the algorithms used to generate the ADC values. The normal or more ideal brain anatomy of healthy volunteers
allows less differentiation between the methods than does the pathological brain anatomy of patients. For quan-
tification, we concentrated on one important fiber structure, the SLF, however, samples of other structures have
shown similar results.

It is advisable to combine the quantitative and qualitative results to obtain an overall picture. For example,
some MS patients could not be added to the quantitative analysis because only the probabilistic algorithm is
able to produce processable results. This indicates that in clinical cases with brain lesions or neuronal diseases,
the probabilistic algorithm is the method of choice. Although first papers have already proposed to implement
probabilistic approaches on the GPU,6 this field of research should be examined in the future as probabilistic
approaches are still an order of magnitude slower than deterministic solutions.
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APPENDIX A. SPSS SOURCE CODE

We used analysis of variance (ANOVA) through GLM for repeated measurements to analyze the sensitivity of
the deterministic and the probabilistic method for pathological alterations in the MS patients. For this purpose,
we utilized the statistical analysis software SPSS. The source code for our analysis can be found below. There,
adcPro r defines the mean ADC value which has been measured in MS patients in the right hemisphere using
the probabilistic approach. The substring l defines the left hemisphere and the substring Det denotes the
deterministic approach.

GLM adcPro r adcDet r adcPro l adcDet l BY patient
/WSFACTOR=hemi 2 Polynomial method 2 Polynomial
/METHOD=SSTYPE(3)
/PLOT=PROFILE(patient*method patient*hemi)
/CRITERIA=ALPHA(.05)
/WSDESIGN=hemi method hemi*method
/DESIGN=patient.

APPENDIX B. MEASUREMENT VALUES

FA
(prob.)

FA
(det.)

RD
(prob.)

RD
(det.)

ADC
(prob.)

ADC
(det.)

AD
(prob.)

AD
(det.)

mean (right) 0.4130 0.4120 0.000544 0.000545 0.000716 0.000717 0.00106 0.00106
stddev (right) 0.0285 0.0311 3.48·10−5 3.26·10−5 2.84·10−5 2.58·10−5 3.40·10−5 3.78·10−5

mean (left) 0.4190 0.4170 0.000528 0.000529 0.000692 0.000692 0.00102 0.00102
stddev (left) 0.0300 0.0352 3.05·10−5 3.14·10−5 2.89·10−5 2.69·10−5 4.30·10−5 4.65·10−5

Table 1. Control group. FA: fractional anisotropy, RD: radial diffusivity, ADC: diffusion strength, AD: axial diffusivity.

FA
(prob.)

FA
(det.)

RD
(prob.)

RD
(det.)

ADC
(prob.)

ADC
(det.)

AD
(prob.)

AD
(det.)

mean (right) 0.3680 0.3740 0.000645 0.000643 0.000810 0.000809 0.00114 0.00114
stddev (right) 0.0405 0.0390 7.50·10−5 7.80·10−5 7.36·10−5 7.74·10−5 8.46·10−5 8.80·10−5

mean (left) 0.3900 0.3910 0.000603 0.000600 0.000771 0.000767 0.00111 0.00110
stddev (left) 0.0403 0.0416 7.90·10−5 7.60·10−5 7.53·10−5 7.33·10−5 6.87·10−5 7.14·10−5

Table 2. MS patients. FA: fractional anisotropy, RD: radial diffusivity, ADC: diffusion strength, AD: axial diffusivity.


