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ABSTRACT

In the last few years, clinicians have started using fiber tracking algorithms for pre- and intraoperative
neurosurgical planning. In the absence of a ground truth, it is often difficult to asses the validity and
precision of these algorithms. To this end, we develop a realistic DTI software model in which multiple
fiber bundles and their geometrical configuration may be specified, also allowing for scenarios in which
fiber bundles cross or kiss and which are common bottlenecks of fiber tracking algorithms. Partial
voluming, that is the contributions of multiple tissues to a voxel, is taken into account. The model
gives us the possibility to compute the diffusion-weighted signal attenuation given certain tissue and
scanner parameters. On the tissue side we can model the diffusion coefficients, the principal diffusion
direction and the width of the fiber bundles. On the scanner side, we can model the diffusion time, the
strength and direction of the applied diffusion gradient and the width of the diffusion pulse. We also
include the possibility to add noise and various artifacts such as aliasing and N/2 ghosting to the model.
Having generated the model of a fiber bundle, we determine the distance between the tracked fibers and
the original model, thus being able to make assertions on the accuracy of the employed fiber tracking
algorithm. Moreover, we can use this information to give an indication about an appropriate width of a
safety margin around the tracked fiber bundle.
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1. INTRODUCTION

Diffusion tensor imaging (DTI) is a magnetic resonance imaging method which allows to measure the
anisotropic diffusion of water molecules in in-vivo biological tissue, such as white matter (WM), in
the brain. An important application of DTI is fiber tractography, which assumes that the principal
diffusion direction matches the orientation of the corresponding underlying fiber system and thus allows
the reconstruction of the 3D architecture of WM fiber pathways. In recent years fiber tractography has
become well established in the research environment, with several clinical uses being reported.

One of the major hurdles when developing fiber tracking algorithms is that hardware or software
models of fiber bundles are needed in order to asses their validity and precision. It is therefore necessary
to develop hardware or software models with a known fiber network. Software models have the advantage
that they can be easily modified to account for different scanner parameters, image noise or artifacts.
While much of the previous work has focused on simple models in which fiber bundles were represented
as cylindrical tubes or helices (see for example1–3), in this work we suggest a framework in which it
is possible to simulate both the smooth transition between the actual white matter pathway and the
surrounding tissue and the partial volume effects caused by the possible contemporary presence of white
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matter, grey matter and cerebrospinal fluid in one voxel. Even though we only model fiber bundles with
a circular cross section, in many cases this restriction is lifted by the actual presence of white matter at
a cross section. We realistically simulate the noise in magnetic resonance scans and image artifacts such
as aliasing and N/2 ghosting.

We focus on generating a phantom of the corticospinal tract. Afterwards, we reconstruct the modeled
tract by means of a fiber tracking algorithm and make a quantitative analysis of the algorithm’s accuracy.
This information is used to estimate what an appropriate safety margin around the tracked fibers should
be and to analyze after which length the first fibers start to leave the modeled fiber bundle.

2. METHODS

In this section, we start by introducing the general framework that we use to generate the diffusion tensor
model. Next, we provide details on how we model different tissues and white matter pathways. After a
brief overview of the employed fiber tracking algorithm, we conclude with an analysis of its accuracy.

2.1 DTI Model Framework

In order to generate a synthetic tensor field, we start by computing a set a of diffusion-weighted (DW)
images (one image for each corresponding gradient direction).

The diffusion-weighted signal is modeled according to the CHARMED model proposed in.4, 5 This
model contains a hindered extra-axonal compartment as well as a restricted intra-axonal compartment.
We restrict ourselves to the hindered model, which gives rise to an effective diffusion tensor and primarily
explains the Gaussian signal attenuation observed at low b values. Let us denote the diffusion time by Δ
and set

q =
γgδ

2π

Here γ is the proton gyromagnetic ratio, g is the vector whose magnitude is the strength of the applied
diffusion gradient and whose direction is along the axis of the applied diffusion gradient, δ is the width
of the diffusion pulse gradient. In this case, the net signal attenuation is given by

E(q, Δ) =
M∑

i=1

f i
h · Ei

h(q, Δ) (1)

where the f i
h are the T2 weighted volume fractions of the hindered compartments, Ei

h(q, Δ) is the nor-
malized MR echo signal from the i-th hindered compartment in a voxel. The CHARMED model assumes
a cylindrically symmetric tensor model (λ1 �=λ2 =λ3) and denotes the diffusion coefficients parallel and
perpendicular to the axon’s fiber by λ‖ and λ⊥ respectively. In similar manner, q may be written as
q = q‖ + q⊥. For details on the computation of q‖ and q⊥ see [4, Appendix B]. Then Ei

h(q, Δ) is given
by

Ei
h(q, Δ) = e−4π2(Δ−(δ/3))|q‖|2λ‖ + e−4π2(Δ−(δ/3))|q⊥|2λ⊥

It is known that noise in magnitude magnetic resonance data is Rician distributed.6 As suggested
in,7 such noise distribution may be simulated in the image by computing |E(q, Δ) + Ñ(0, σ2)|, where
Ñ(0, σ2) is a Gaussian distributed complex variable with mean 0 and variance σ2. Using standard fitting
procedures, we use the DW images to compute the tensor valued image.

2.2 Generating the BrainWeb-Based Model

Given the framework presented in Section 2.1, we need to specify the fractions of tissue present in each
voxel with the corresponding T2 and diffusion properties. To this end, we build upon the BrainWeb project
at McGill University.8, 18 The BrainWeb project provides a dataset created by means of 27 low-noise
scans (T1 weighted gradient echo acquisitions with TR/TE/FA=18ms/10ms/30◦) of the same individual,
coregistered in stereotaxic space where they were subsampled and intensity averaged.9 By means of a
modified minimum-distance classifier, ten volumetric datasets that define the spatial distribution for
different tissues were created. In these images, the voxel intensity is proportional to the fraction of



tissue within the voxel. In our model we make use of the white matter, grey matter and cerebrospinal
fluid volumes, an example slice of each volume is shown in Figure 1. The volumes are defined at a 1mm
isotropic voxel grid, with dimensions 181×217×181 (XxYxZ). Other tissue volumes that might be included
in our model in later work include fat, skin, glial matter, and connective tissue.

(a) (b) (c)

Figure 1. (a): An example slice of the white matter volume. (b): The grey matter volume. (c): The cerebrospinal
fluid volume.

To each fraction of tissue in a voxel we assign a main diffusion direction and the eigenvalues of the
cylindrically symmetric diffusion tensor. The resulting signal attenuation is then computed according to
Equation 1. For the above tissues, the average eigenvalues of the diffusion tensors have been measured
and reported in,10–12 from which we derive the eigenvalues for our model written in Table 1. In case

T2 (ms) λ‖ (10−4mm2/s) λ⊥ (10−4mm2/s)
White Matter 70 11.30±0.7 5.15±0.3
Grey Matter 83 9.90±0.4 7.05±0.3
Cerebrospinal Fluid 329 36.00±2.3 30.36±1.8

Table 1. T2 values and tensor eigenvalues used in the BrainWeb-based model for the different tissues.

we do not model one or more white matter tracts to go through a voxel V , we assign a random main
diffusion direction to each tissue portion present in V . However, we let the main diffusion directions
corresponding to a given tissue type vary smoothly in space, in order to have, at least locally, a realistic
change in tensor orientation.

Otherwise, if V has a white matter tissue portion and there are one or more fiber bundles going
through it, the main diffusion direction depends on these bundles. Details on the modeling of fiber
bundles and on setting the main diffusion direction are given in the following Section 2.3.

2.3 Modeling White Matter Pathways

In order to model a white matter pathway we start by defining a tuple of n control points {Pi}i=1,...,n in
R

3 through which the fiber bundle should go. To obtain a smooth backbone of a fiber bundle from just a
few control points, we perform cubic spline interpolation on {Pi}. For simplicity we choose Catmull-Rom
splines, which are defined by two points Pi, Pi+1 and two tangent vectors Ti, Ti+1. The tangent vectors
are computed by

Tj =
1
2
· (Tj+1 − Tj−1)

Then the evolution of the parametric curve si(t) = (xi(t), yi(t), zi(t))T with t∈ [0, 1] and connecting Pi

and Pi+1 is given for example in x-dimension by

xi(t) =
(
t3 t2 t 1

) ·

⎛
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and similarly in the other dimensions. Concatenating the different splines {si} we have a differential 3D
curve s connecting P1 to Pn. See Fig. 2(a) for an example curve.

Next, we resample the spline s at (small) equidistant t steps and obtain a final set of points which we
denote by {ri}i=1,...,N . As suggested in,13 we define a piecewise differential 3D space curve t(r), which is
1 if r is on the backbone of the fiber and 0 else. t(r) is given by

t(r) =
N−1∑

i=1

1∫

0

δ[r − (ri + αΔi)]dα

where δ denotes the Dirac-delta distribution and α is a parametrization variable. To model the non-
constant fiber density we convolve the fiber trajectory t(r) with a kernel k(r):

T (r) = t(r) ∗ k(r) =
N−1∑

i=1

1∫

0

k[r − (ri + αΔi)]dα

︸ ︷︷ ︸
≡T i(r)

Specifically we choose the saturated kernel

k(r) =
erf

(
w+2‖r‖
2
√

2σ

)
+ erf

(
w−2‖r‖
2
√

2σ

)

2 erf
(

w
2
√

2σ

)

where erf is the error function, the parameter w controls the width of the fiber bundle and σ controls the
variance of the Gaussian decay.

We set the percentage P (r) of white matter occupied by the fiber in the voxel at r by

P (r) =
T (r)

maxr∈R3 T (r)

The remaining white matter is modeled as having a random direction. In case there are several fibers
which contribute to a voxel, we generally proceed as above, with the difference that we may have to
rescale each contribution by the sum of all contributions, so that the latter sum is less or equal to one
(100%).

The main diffusion direction e1 of a fiber at r is computed as a weighted sum of the vector lines Δi:

e1(r) =
∑N−1

i=1 T i(r)Δi∥∥∥
∑N−1

i=1 T i(r)Δi

∥∥∥

A schematic representation of the main diffusion directions of the tensors is given in Fig. 2(b). Figure 3
shows an example fiber and two crossing fibers with and without random “background” directions.
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Figure 2. (a): Example curve interpolating the control points {Pi} and forming the backbone of the modeled fiber
bundle. (b): Schematic representation of the main diffusion directions of the tensors within the modeled fiber
bundle.

2.4 Noise, Aliasing, and N/2 Ghosting

In our model, we add Rice distributed noise to the diffusion weighted images as described in Section 2.1.
The variance of the noise may be computed as illustrated in14, 17 through

σ2 = K
Nx Ny 〈V 2〉

Nav FOV2
x FOV2

y Δt



(a) (b)
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Figure 3. (a): Example fiber. (b): Two crossing fibers without random “background” directions. (c): Two crossing
fibers with random “background” directions.

where Nx,Ny are the number of samples in x and y direction, 〈V 2〉 is the thermal noise power, Nav is the
number of averages, FOVx, FOVy are the fields of view in x and y direction, Δt is the sampling interval
and K is a scanner depended factor.

As far as artifacts in magnetic resonance images are concerned, two frequent ones are aliasing and
N/2 ghosting. Aliasing is caused by a field of view smaller than the anatomy being imaged: it occurs
in phase encoding direction, and in case of three dimensional acquisition, it may also occur in section
direction. For a given slice of the BrainWeb based model, we simulate aliasing as follows. We add an
intensity scaled copy of the image voxels with y-coordinate larger or smaller than the field of view in
y-direction, at the bottom or at the top of the image, respectively. N/2 ghosting is an artifact caused by
phase errors in k-space. On images acquired with a single-shot echo-planar imaging sequence, the ghost
appears as an additional image with reduced intensity that is shifted by half the field of view.15 This
artifacts is thus simply modeled by adding an intensity scaled version of our image shifted by half the
field of view. For both presented artifacts, we use scaling factors in the range (0, 1). Figure 4 shows some
examples of simulated images with noise and artifacts.



(a) (b)
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Figure 4. (a): Example slice of a modeled diffusion weighted image, with gradient pointing in x direction. (b): Com-
plex Gaussian noise with σ2=80 added to the image. (c): Aliasing with factor=0.4 added to the image. (d): N/2
ghosting with factor=0.4 added to the image.

2.5 Fiber Tracking Analysis

With the help of a physician having experience with DTI, we define the backbone of the right corticospinal
tract. It is initially defined by 18 points and the parameters for the convolution kernel are w=12mm and
σ=0.5. After resampling it consists of 968 points at a distance of 0.1mm. It is important to note that
the thickness of a fiber bundle does not only depend on the kernel width, but also on the actual presence
of white matter in the different voxels. After the fiber has been added to the model, we track it using
the advection-diffusion based fiber tracking algorithm presented in.16For a given tracking position rt and
step length Δs the next position rt+1 is given by

rt+1 = rt + dt Δs +
1
2
kt Δs2

dt is computed by using the previous tracking direction dt−1

d′ =
[
αvvt + (1 − α)

D
λmax

]
dt−1 dt =

d′

‖d′‖
here, D is the tensor at rt with largest eigenvalue λmax and corresponding eigenvector v, the weight
α∈ [0, 1] interpolates between streamline (α =1) and deflection (α =0) based tracking. Further, kt is a
curvature term given by

kt =
dt − dt−1

Δs



which helps improving fiber tracking accuracy.

In our implementation, the resulting tracked fibers are represented by several linearly connected
points. To evaluate our algorithm, we compute the Hausdorff distance between one point of the spline-
interpolated fiber backbone and the points of the tracked fibers. Given that the fibers are sampled densely
enough, this distance provides a good approximation of the maximal distance between the fibers in the
model and those that are tracked.

3. RESULTS

The remaining parameters used to compute the diffusion weighted images according to Equation 1 are
reported in Table 2. We select a region at the level of the internal capsule to start the tracking of the

Default value
voxel size 1×1×1 mm3

number of gradients 6
gradient strength 20 T/m
diffusion time 40 msec
pulse width 35 msec
gyromagnetic ratio 2.675 · 108 rad/sT
thermal noise variance 100
fiber tracking step length 1 mm

Table 2. Parameters used to compute the signal attenuation.

corticospinal tract. After the tracking, fibers which are obviously not part of the corticospinal tract are
excluded from the result. Figure 6 shows the tracked fibers and the distance plot. More in detail, the
plot shows on one hand the maximum distance between fiber backbone and tracked fibers, on the other
the minimum distance between fibers correctly tracked inside the bundle and the border of the bundle
model (note that in the midbrain the latter distance may also be constrained by the actual presence of
white matter).

Figure 5. Fiber tracking based on our DTI software model, anatomy given by the BrainWeb phantom.

We observe that fibers are tracked correctly inside the modeled fiber bundle between 3.5 and 48mm.
Given that the fiber tracking seed was close to 25mm, this indicates that after a distance of approximately
20mm the first fibers leave the modeled bundle. When fibers are tracked correctly inside the bundle, the
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Figure 6. Maximum distance between tracked fibers and modeled fiber bundle backbone.

maximum distance to the fiber bundle border varies between 2 and 3mm, which this experiment indicates
to be an appropriate safety margin.

4. CONCLUSIONS

In this paper, we make a further step towards the creation of realistic DTI software models. These can
be used as ground truth to test various fiber tracking algorithms. A first quantitative analysis of the
advection-diffusion based fiber tracking algorithm suggests that, in the considered experiment, the first
fibers leave the modeled bundle after approximately 20mm and that a safety margin of 2-3mm seems
appropriate. Future work includes analyzing the precision of the algorithm in the presence of kissing
or crossing fibers. We would also like to systematically analyze how precision varies in relation with
the underlying image data (testing different values for image noise or artifacts, thickness of the fiber
bundle, fractional anisotropy of the tensors) or in relation with fiber tracking parameters (such as step
length, density of seed points). Moreover, fiber tracking results should be compared with those of other
approaches, such as for example probabilistic ones. Ultimately, this work should help clinicians in better
understanding the precision of generated fiber tracking results.
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