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Abstract. This paper presents a novel variational approach for the seg-
mentation of diffusion tensor images (DTI). After a certain fiber bundle
has been tracked by means of an arbitrary fiber tracking algorithm, we
suggest to use the DTI segmentation algorithm to better determine the
true borders of the fiber bundle. Specifically, we perform kernel density
estimations of the probability density functions (PDFs) of the principal
diffusion directions in the foreground - to be segmented - and the back-
ground. Thus, we choose a non-parametric approach and do not make
any assumption on the distribution of the underlying data. The esti-
mated PDFs are employed to construct a novel energy functional to be
minimized. The energy functional contains a fuzzy membership function
and a regularization term, to guarantee the smoothness of the result-
ing segmentation. A robust and efficient two-phase method is used to
minimize the energy functional and simultaneously update the density
functions. The algorithm is validated on both simulated DTI phantoms
and real data.

Keywords: Brain, Diffusion Tensor Imaging, Fiber Tracking, Fuzzy Segmen-
tation, Parzen Density Estimate, Non-Parametric

1 Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging method which
allows to measure the anisotropic diffusion of water molecules in in-vivo bio-
logical tissue such as white matter (WM) in the brain [9,31,28]. An important
application of DTI is fiber tractography, which assumes that the principal dif-
fusion direction matches the orientation of the corresponding underlying fiber
system and thus allows the reconstruction of the 3D architecture of WM fiber
pathways [8,25,29]. In recent years, fiber tractography has become well estab-
lished in the research environment with first clinical uses being reported.

A drawback of many streamline tractography algorithms is that the extent of
the tracked fiber bundle is often underestimated [7]. For this reason, we suggest
a variational approach to the segmentation of diffusion tensor images which may
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be used as a postprocessing step for fiber tracking when it is crucial to precisely
estimate the true border location of the bundle. In further detail, the voxels
pierced by a tracked fiber are used to initialize the segmentation algorithm.

In [27], a fuzzy region competition algorithm for the segmentation of scalar
valued images has been proposed. In this work, we illustrate how some of those
ideas may be adapted to segment diffusion tensor images. Moreover, for the
sake of efficiency, we suggest a simplified version of the energy functional to
be minimized. The functional is composed of a fuzzy competition term and a
regularization term. The competition term drives the solution toward the most
likely region (the tract to be segmented or the background) based upon kernel
density estimations of the PDFs of the principal diffusion directions, whereas
the regularization term guarantees smooth segmentation results. A minimizer of
the functional, which is robust with respect to the initialization and efficiently
computed, may be obtained by using the two-phase algorithm presented in [11].
Segmentation results may be visualized in 2D as color coded likelihood maps
of a voxel being part of the segmented tract, or (after thresholding) in 3D as
semi-transparent hulls around the tracked fibers.

Possible applications of the algorithm include determining the exact location
of the boundaries of a certain fiber bundle when planning a neurosurgical pro-
cedure or a more precise quantization of the atrophy of different white matter
structures in dementia patients.

Structure of the paper. After discussing related work in Section 2, we
detail the segmentation method in Section 3. In particular, we illustrate the
two phases of the algorithm: the estimation of the probability density functions
in Section 3.1 and the minimization of the energy functional in Section 3.2.
Moreover, in Section 3.4, we suggest simple ways of making the segmentation
algorithm act locally on the image. Results on modeled DTI software phantoms
and on a real patient dataset are shown in Section 4 and some concluding remarks
are made in Section 5.

2 Related Work

The problem of segmenting diffusion tensor data has received increasing atten-
tion in recent years. In [33], a crisp segmentation algorithm based on k-means
clustering is presented with the goal of partitioning the thalamus into its different
nuclei. As a distance measure, the k-means approach employs a linear combina-
tion of the Mahalanobis distance between voxel coordinates and the Frobenius
norm of the difference between the two diffusion tensors at those coordinates.

The work of [34] similarly aims at segmenting thalamic nuclei from DTI, and
by making use of spectral clustering and Markovian relaxation, presents the ad-
vantage of not having to explicitly define the centers of the clusters. Compared to
these two approaches, in the context of tract reconstruction, fuzzy segmentation
algorithms have the advantage that they can be used to determine voxels which
present partial volume effects, such as the contemporary presence of different
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grey matter tracts, or of different tissues such as grey matter and cerebrospinal
fluid.

In [4,5,3] an interesting fuzzy and nonparametric approach to DTI segmen-
tation is suggested. The approach makes use of the tensor representation in the
Log-Euclidean framework [1] and information theory to cluster tensors belonging
to a specific tract. However, from our experience, the Log-Euclidean similarity-
invariant distance between tensors is very sensitive to changes in tensor eigenval-
ues and less sensitive with respect to changes in the principal diffusion direction,
which leads to segmentation results which are able to distinguish very well be-
tween clusters of different anisotropy, but to a lesser extent between tensor clus-
ters which differ only slightly with respect to the principal diffusion direction.
For this reason, in this paper we concentrate our analysis on the distribution of
the principal diffusion direction in the different tensor clusters.

In [10], a weighted graph is constructed with a number of vertexes corre-
sponding to the number of image voxels and weights assigned to the edges based
on the difference in fractional anisotropy between tensors at neighboring voxels.
Binary tract extraction is obtained by means of an s-t cut of the graph. We
compare the segmentation results of this min-cut based algorithm to the results
of the variational approach suggested in this paper.

3 Methods

We start by computing an initial estimate of the fiber tract to be segmented by
means of the streamline tractography algorithm presented in [32]. However, any
other tractography algorithm may be used. Let us denote the vector-valued image
containing the principal diffusion directions estimated in each voxel by I. Fur-
ther, define a fuzzy membership function u over the domain Ω of I, constrained
to take values in the interval [0, 1]. A higher value of u at voxel x corresponds
to a higher likelihood for the voxel x to be part of the tract we would like to
segment. Initially, we set u = 1 at voxels through which the tracked fibers go
(the foreground of the image) and u = 0 elsewhere (the background of the im-
age). Next, we apply a two-phase fuzzy region competition algorithm, described
in its general form in [26]. In the version of the algorithm presented in this work,
the algorithm alternates between estimating the probability density functions
(PDFs) of principal diffusion directions in the foreground and background of
the image and finding a fuzzy membership function u that minimizes a specific
energy functional. These two steps are described in detail in the next sections.

3.1 Estimation of the Probability Density Functions

Let us denote the PDF of the principal diffusion direction at voxels belonging
to the tracked bundle by p1 and the PDF of the principal diffusion direction at
voxels belonging to the background by p2. Because the sense of principal diffusion
directions is unknown, we may restrict our computations to the upper hemisphere
of the 2-sphere S2, which we denote byA. To this end, for n approximately evenly
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distributed points {a} on A we evaluate

p1(a) =
1

‖u‖1

∫
Ω

u(x)K(a, I(x)) dx (1)

p2(a) =
1

‖1− u‖1

∫
Ω

(1− u(x))K(a, I(x)) dx (2)

where ‖u‖1 =
∫
Ω
u(x) dx and K is a weighting function. Specifically, Equa-

tions (1) and (2) correspond to continuous versions of weighted Parzen density
estimates [30]. Although possible appropriate choices for the kernel K are man-
ifold, we use the von Mises-Fisher distribution [2,23] on S2 with mean direction
µ and concentration parameter κ

K(a, µ) = C3(κ) exp(κ aTµ) (3)

with κ ≥ 0, ‖µ‖ = 1 and C3 a normalization constant given by

C3(κ) =
κ

4π sinh(κ)
=

κ

2π(eκ − e−κ)
. (4)

Examples of estimated PDFs p1 and p2 are shown in Figure 1.

(a) (b)

Fig. 1. Example of estimated probability density functions of the diffusion direction at
voxels belonging to the tracked fiber bundle (a) and of the diffusion direction at voxels
belonging to the background (b). For visualization purposes, the whole sphere is shown
and not only the upper hemisphere to which we restrict our computations. Notice the
strong directional preference in voxels belonging to the tracked bundle.

137

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/


3.2 Fuzzy Membership Formulation

Once the PDFs p1 and p2 have been estimated, we suggest minimizing the fol-
lowing energy functional

F (u, p1, p2) =

∫
Ω

|∇u(x)| dx+λ

∫
Ω

{u(x)·[−p1(I(x))]+(1−u(x))·[−p2(I(x))]} dx.

(5)
The first term of the energy functional is a regularization term that minimizes
the total variation of u, i.e. the sum of the perimeters of its level sets, and thus
guarantees the smoothness of the segmented region. The second term, weighted
by a scalar λ > 0, is the fuzzy competition term which drives the membership
function u towards the region of higher probability. In order to minimize F ,
we follow the approach described in [11] in a related context: we introduce an
auxiliary variable v and minimize the approximation to F given by

F̃ (u, v, p1, p2) =

∫
Ω

|∇u(x)| dx+
1

2θ

∫
Ω

|u(x)− v(x)|2 dx

+ λ

∫
Ω

{v(x) · [−p1(I(x))] + (1− v(x)) · [−p2(I(x))]} dx (6)

with respect to the minimizing couple (u∗, v∗). The scalar θ is chosen to be small,
so that u∗ and v∗ are almost identical. The optimal v∗ may be computed as [11]

v∗(x) = min(max(0, u(x)− θr(x)), 1) (7)

where the error function r(x) is given by r(x) = λ · [p2(I(x)) − p1(I(x))]. For
simplicity and efficiency, having already evaluated the PDFs p1 and p2 on n
approximately evenly distributed points on A, we evaluate the PDFs at I(x) by
using nearest-neighbor interpolation. It is easy to see that Equation (7) updates
v(x) to indicate a membership to the most likely region. We are now left with
the minimization of the membership function u. In the form of Equation (6),
only the first two terms of F̃ depend on u, which are exactly the functional
minimized in [12] to obtain an image of minimized total variation u from a noisy
image v. Let us review the algorithm suggested in [12] to solve the total variation
minimization problem and extend it to the three dimensional case. For an image
q of size Nx×Ny×Nz the gradient∇q at (i, j, k) is defined as the vector (qx, qy, qz).
For example, the partial derivative in x-direction is approximated by

qx(i, j, k) =

{
q(i+ 1, j, k)− q(i, j, k) if i<Nx

0 if i=Nx
(8)
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and respectively in the other dimensions. For a vector-valued image p of size
Nx×Ny×Nz×3, the divergence operator div p is defined as

(div p)(i, j, k) =

p(i, j, k, 1)− p(i−1, j, k, 1) if 1<i<Nx
p(i, j, k, 1) if i=1

−p(i−1, j, k, 1) if i=Nx

+p(i, j, k, 2)− p(i, j−1, k, 2) if 1<j<Ny
p(i, j, k, 2) if j=1

−p(i, j−1, k, 2) if j=Ny

+p(i, j, k, 3)− p(i, j, k−1, 3) if 1<k<Nz
p(i, j, k, 3) if k=1

−p(i, j, k−1, 3) if k=Nz

(9)

In three dimensions, it can be shown (the proof is similar to the 2D case in [12])
that for τ≤1/12, p0 =0 and

pn+1(i, j, k, ·) =
pn(i, j, k, ·) + τ(∇(div pn − v/θ))(i, j, k, ·)

1 + τ |(∇(div pn − v/θ))(i, j, k, ·)|
(10)

the series

v − θdiv pn+1 (11)

converges to the optimal solution u∗ as n → ∞. Similarly to the remark in the
original paper that setting τ=1/4 still seems to lead to convergence for the 2D
case, from our experience in 3D the algorithm appears to work well for τ =1/6
as well.

3.3 Overview of the algorithm

Summarizing, for a given tolerance ts≥0, our algorithm works as follows:

– obtain initial guess for the segmentation of the fiber tract by means of a fiber
tracking algorithm

– initialize u0 to 1 at voxels pierced by the tracked fibers and to 0 elsewhere

– while |un+1 − un|∞>ts
• estimate the PDFs p1 and p2 according to Equations (1) and (2)

• set v :=u

• update v according to Equation (7)

• minimize the total variation of u according to Equation (11)

– threshold u to obtain the segmented fiber tract
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3.4 Local Adaptation

In order to estimate the PDFs of the principal diffusion direction not globally
on the whole image but locally, we suggest applying the algorithm multiple
times on subimages centered at the centerline of the tracked fibers, as schemat-
ically illustrated for a synthetic image in Figure 2(a). In our implementation
we compute the centerline by simply averaging the coordinates of the tracked
fibers, although more complicated skeletonization approaches such as the ones
described in [14,15] may be used. Another simple option is to split the image into
multiple images along one dimension, and subsequently compute a box around
the tracked fibers in the remaining two dimensions.

4 Results

We test our algorithm on two synthetic datasets with varying amount of image
noise and on one real image. As suggested in [16], Rician distributed noise may be
simulated in a magnitude MR image by computing |E(q, ∆) + Ñ(0, σ2)|, where
E(q, ∆) is the attenuated MR signal and Ñ(0, σ2) is a Gaussian distributed
complex variable with mean 0 and variance σ2.

For both synthetic datasets, we use the parameters κ = 1, θ = 10, λ = 1,
ts = 0.1, tTV = 0.01. tTV is the threshold parameter on the maximal difference
between un+1 and un when iteratively minimizing the total variation of u. For
the real dataset we choose λ=0.5, preferring a slightly lower competition factor
because of potentially similar directions in foreground and background.

The first dataset is given by a torus-shaped DTI phantom. For details on the
construction of the model, see [7]. The model presents a fiber bundle shaped as
part of a torus, surrounded by highly isotropic tensors with random principal
diffusion direction. The b0 image is shown in Figure 2(a), together with the
labeling of the seed ROI used for fiber tracking and the subimages along the
centerline of the bundle to which our algorithm is applied. An example noisy
b0 subimage (σ = 6) is shown in Figure 2(b), and results of the variational
segmentation algorithm are displayed in Figure 2(e) and 2(f). The generated
segmentation results are compared to the original mask obtained by means of
fiber tracking and to the min-cut based approach presented in [10], by computing
the corresponding Dice’s similarity coefficient [35]. Results for the torus-shaped
phantom are presented in Table 1.

Noise Standard Deviation 2.0 4.0 6.0

original mask after fiber tracking 0.844 0.771 0.654

after applying the variational segmentation algorithm 0.957 0.945 0.939

after applying the min-cut based segmentation algorithm 0.923 0.918 0.918

Table 1. Comparison of Dice’s coefficients for the torus-shaped model.

140

Clic
k t

o b
uy N

OW
!PD

F-XChange Viewer

w
w

w.docu-track.c
om Clic

k t
o b

uy N
OW

!PD

F-XChange Viewer

w
w

w.docu-track.c

om

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/


(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) The b0 image of the torus-shaped DTI phantom with labeled seed ROI
used for fiber tracking and the subimages along the centerline of the bundle to which
our algorithm is applied (delineated by the red boxes). (b) Example noisy b0 subimage
(σ = 6). (c) Result of fiber tracking. (d) One slice of the mask used to initialize the
segmentation algorithm, given by the voxels pierced by the tracked fibers. (e) Result-
ing mask after applying the variational segmentation algorithm and thresholding. (f)
Segmentation result displayed in 3D as iso-surface.

Next, we test our algorithm on a DTI phantom based on the BrainWeb
project [13], with which we realistically modeled part of the right corticospinal
tract (details on the model can be found in [6]). Both the tensors which are
part of the tract and the tensors in the background have approximately the
same anisotropy. Examples of tracked fibers are shown in Figure 3(a), and an
example color coding of the membership function u is presented in Figure 3(b).
Segmentation results for different noise levels are given in Table 2.

Noise Standard Deviation 2.0 4.0 6.0

original mask after fiber tracking 0.702 0.610 0.640

after applying the segmentation algorithm 0.888 0.868 0.862

after applying the min-cut based segmentation algorithm 0.849 0.831 0.768

Table 2. Comparison of Dice’s coefficients for the BrainWeb-based model.
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(a) (b)

Fig. 3. (a) Example of fibers tracked on the BrainWeb-based DTI phantom, in which
we modeled part of the corticospinal tract. (b) The fuzzy membership function u is
color coded and overlaid on a slice of the modeled b0 image (noise σ=6).

Finally, we test our algorithm on a real magnetic resonance dataset of a tumor
patient (diffusion-weighted images with TR/TE/FA=10700ms/84ms/90◦, voxel
size is 1.80×1.80×1.98mm, source: [17]) on which we track the corticospinal tract.
We assume that the surgeon performing fiber tracking considers the tracked
fibers to be part of the bundle he would like to segment, therefore for this dataset
we do not allow for voxels to be excluded from the initial segmentation mask,
but only included. The resulting segmentation is visualized in 2D by color coding
the membership function u (see Figure 4(a)) and in 3D as a semi-transparent
hull around the tracked fibers (see Figure 4(b)). A non-optimized Matlab [24]
implementation of the algorithm on a modern PC (Intel Core2 Quad CPU) took
approximately 30 minutes to segment the image.

5 Discussion

With this work, we have presented a novel variational approach to the segmen-
tation of DTI data. The algorithm consists of two steps which are alternated
in an iterative fashion: the estimation of the PDFs of the principal diffusion
directions in the tract to be segmented and in the image background, followed
by the minimization of an energy functional which drives voxels to the most
likely region based on the principal diffusion direction in that voxel, and guar-
antees a smooth partition of the image by minimizing the total variation of the
membership function u.

Our first tests on both synthetic data (which we could quantitatively analyze
by comparing Dice’s similarity coefficients) and a real dataset support the valid-
ity of the method. The Dice’s coefficients are a bit lower for the BrainWeb-based
phantom, which may be due to excessive smoothness imposed on the segmenta-
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(a) (b)

Fig. 4. The corticospinal tract of a tumor patient has been tracked and successively
segmented. In (a) the fuzzy membership function u is color coded and overlaid on a slice
of the original b0 image. In (b) the segmentation result after thresholding is visualized
as a semi-transparent hull around the tracked fibers.

tion result in regions near the cortex where the phantom presents an irregular
border. An optimization of the parameters will be considered in future work, in
addition to an in-depth analysis of the stability of the computed fuzzy member-
ship function with respect to different initializations (i.e., different parameters
used for the initial fiber tracking) and modeling of the underlying tensor data.
Moreover, extensive analysis is needed in order to determine an appropriate
threshold value for the likelihood function, depending on the properties (such as
image noise and resolution) of the considered dataset.

Two positive indications may be inferred from the segmentation results on
the synthetic test data. As a first remark, being based on an analysis of the
principal diffusion directions of the tensors, the algorithm seems to perform well
both when there is a large anisotropy difference between the two regions (torus-
shaped model) and when the difference mainly lies in the principal diffusion
direction (BrainWeb-based model). As a second remark, the algorithm seems
to produce segmentation results of comparable quality when different levels of
image noise are modeled. Finally, higher segmentation accuracy was obtained
compared to the graph-based approach from [10].

An interesting idea for future work may be to estimate the variance-covariance
matrix of the principal diffusion direction in each voxel according to the frame-
work presented in [19,20,21] and make use of the obtained data for a pointwise
kernel density estimation of the PDFs of the principal diffusion directions. This
way, particularly noisy voxels could contribute less to the estimated PDFs. The
algorithm should also be extended to make use of information on fractional
anisotropy, or on all six tensor entries, to better deal with the case of crossing
or kissing fibers.
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In conclusion, we hope that after an accurate analysis of the stability of the
suggested method, the algorithm may be helpful for presurgical planning and
various clinical studies.
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