Towards Image-Dependent Safety Hulls for Fiber Tracking

S. Barbieri1, J. Klein1, C. Nimsky2, and H. K. Hahn3

1Fraunhofer MEVIS - Institute for Medical Image Computing, Bremen, Germany, 2Department of Neurosurgery, University Marburg, Marburg, Germany

Introduction: The evaluation of fiber tracking algorithms is a challenging problem, given that software or hardware models are needed in order to have a ground truth to compare against (see for example [1-3]). In this work we introduce a novel global precision measure for tracked fibers, the "safety radius". We use make use of a software model in order to systematically analyze the influence of image noise, fiber bundle diameter, number of seed points and tensor anisotropy on the safety radius. The latter is used to construct safety hulls, i.e. tubes that surround the tracked fibers and indicate their margin of error. Finally, we analyze the spatial distribution of tracked fibers.

Methods: Our software model is given by a portion of a torus generated using a solid kernel as described in [4], which is used to compute a set of synthetic diffusion weighted images (DWI), see an example image shown in Fig. 1(a). The DW signal is computed according to the CHARMED model proposed in [5,6], where we restrict ourselves to the hindered model. We assume cylindrically symmetric tensors and for the fiber bundle we set the eigenvalues of the diffusion tensors parallel and perpendicular to the axial fibers (denoted by λ_3 and λ_1, respectively) to values that are compatible with eigenvalues of tensors encountered in white matter, based on reports from [7,8]. For the background we use isotropic tensors. Partial volume effects are modeled by sampling the image at 0.1mm^3 and then linearly resampling it at 1mm^3. Image noise is simulated by adding Rice distributed noise to the DW images as in [9]. The DW images are used to compute the tensor valued images. The seed ROI used for fiber tracking is set as a circle located on a plane perpendicular to the fiber bundle, with the same diameter as the cross section of the fiber bundle (see Fig. 1(a)). For fiber tracking, we use the advection-diffusion based algorithm presented in [10].

To evaluate our fiber tracking results, we determine a so called safety radius r_s. Given a cross section of the tracked fiber bundle, the safety radius is defined as the minimal radius that is needed so that if a circle with radius r_s were placed around each fiber tracked inside the bundle, the aggregate of these circles would form a topological cover of the cross section of the modeled fiber bundle. In order to find r_s, we first compute the Voronoi Diagram of the points inside the cross section of the fiber bundle; r_s is then given by the maximal distance between one such point and the borders of the corresponding cell (see Fig. 1(b)). Finally, we are interested in the spatial distribution of the tracked fibers, which we analyze by looking at sections of the fiber bundle. We partition the cross section into six semi-annuli of equal area as shown in Fig. 1(c).

Results: In order to generate the software model of the fiber bundle and to determine the DW images we use the following values as default parameters. Gradient strength: 20T/m, pulse width: 35msec, diffusion time: 40msec, radius of fiber bundle path: 80mm, diameter of bundle cross section: 10mm, λ_3 for the bundle: $5.15 \cdot 10^{-4} \text{mm}^2/\text{s}$, λ_1 for the background: $9.9 \cdot 10^{-4} \text{mm}^2/\text{s}$, thermal noise variance: 1.5. Voxel size is (1mm)3; the distance between seed points 1mm and we use 6 different gradient directions. Statistical computations are performed every 10mm of arc length, going counterclockwise from 90°. We perform four separate experiments in which we vary one of the following parameters: the thermal noise variance between 0 and 6, by a step of 0.2, the diameter of the bundle cross section from 5 to 15mm, by a step of 1mm, the distance between seed points between 0.4 and 3mm, by a step of 0.2mm, λ_1 of the fiber bundle from 5.15 to $11.35 \cdot 10^{-4} \text{mm}^2/\text{s}$, by a step of $0.2 \cdot 10^{-4} \text{mm}^2/\text{s}$. For each set of parameters we repeat the addition of noise, followed by tracking and statistical computations, 100 times. Fig. 2 shows the maximal safety radius plots after tracking 20cm for the different experiments.

Conclusions: The plot of noise variance vs. safety radius (Fig.2(a)) suggests that for the analyzed images in which the noise variance is below 2 using a safety hull with 3mm radius is appropriate (for bundles of up to 20cm length). Fig.2(b) shows that on average, there are approximately half as many fibers located on the outer third of the bundle's cross section than on the inner third, given that they are the first to leave the bundle. There isn't a significant difference between the number of fibers on the interior portion of the fiber bundle and on its exterior. The diameter of the fiber bundle does not seem to overly impact fiber tracking results. As expected, a larger number of seed points corresponds to a smaller safety radius. The oscillations in the plot of Fig.2(c) are likely due to having seed points closer or further away from the border of the bundle. Fig.2(d) indicates that the deflection based algorithm works well if the fractional anisotropy of the "white matter" tensors is above 0.25, which should be the case for fiber bundles that do not cross. With this paper, we have gained some insight on the relationship between noise, fiber bundle diameter, number of seed points, tissue anisotropy, and the margin of error of fiber tracking. Further tests are necessary, for example using probabilistic fiber tracking approaches, to get a more complete picture. Moreover, we could apply the gained knowledge about the magnitude of fiber tracking errors to improve existing fiber tracking algorithms.