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Abstract— Diffusion weighted imaging (DWI) derived ap-
parent diffusion coefficient (ADC) is currently used in identify-
ing and post-therapy followup of several types of tumours. In 
brain tumours in particular ADC values are known to corre-
late inversely to tumour cellularity and high and low malig-
nant areas can be distinguished based on ADC values. 

The average ADC value increases after successful chemo-
therapy, radiotherapy or a combination of both and is used as 
a surrogate marker for treatment response. 

More recently DWI derived ADC has been used to differen-
tiate pancreatic cancer from healthy pancreatic tissue although 
with some limitations. A second DWI derived parameter, the 
perfusion fraction f has also shown promise in classifying 
pancreatic lesions. This parameter is estimated using special 
multiple b-value prototypes and the IVIM model. 

The main purpose of our project was to develop a software 
platform to assist radiologists in studying cancerous lesions by 
quantifying and mapping these two DWI derived parameters: 
ADC and perfusion fraction f. The platform we developed 
automatically calculates and maps the ADC and IVIM-model 
perfusion fraction f values from raw diffusion data. 

Furthermore, the software enables the automated delinea-
tion and ADC quantification of tissue sections in a fast, objec-
tive, user independent manner and has so far been applied to 
successfully delineating brain tumours. The perfusion fraction 
f mapping capabilities have so far been successfully applied to 
delineate pancreatic cancer lesions from healthy tissue. Fur-
ther studies are in preparation to apply this software tool to 
study both ADC and perfusion fraction f in other types of 
cancerous lesions. 
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I. INTRODUCTION  

Diffusion weighted magnetic resonance imaging [1,2] 
(DWI) is a method of micro anatomical imaging and was 
introduced into clinical practice in 1990. In this method the 
Brownian molecular motion of water is measured. Diffusion 
can be classified into two principal types: isotropic, in 
which diffusion occurs in all directions equally (as occurs in 
free diffusing water), and anisotropic in which diffusion 

occurs unequally along different directions (as occurs in 
fiber rich biological tissues in which the diffusion is most 
prominent parallel to the fibers). Diffusion Weighted Imag-
ing (DWI) is the qualitative representation of the diffusion 
information in a tissue under examination [1]. In DWI a 
number of quantification steps can be distinguished but two 
basic measurements can be delineated. The first measure-
ment entails scalar values which are recorded as a so called 
apparent diffusion coefficient ADC map. In this map, the 
diffusion coefficients are averaged for each voxel. The 
second method determines a diffusion tensor from at least 
six values from an orthonormal basis of eigenvectors. In this 
article, only the second case is being considered as the data 
is restricted to scalar values shown that “diffusion weighted 
measurements” actually reflect microscopic molecular mo-
tion due to both diffusion and to micro perfusion [4], [5]. 

In his publication of 2008 [6], Le Bihan recalls the im-
portant meaning of the IVIM Model in the focus of model-
ing the movement of blood in the microvasculature as a 
pseudodiffusion process on a macroscopic scale. It can be 
clearly demonstrated that the pseudodiffusion process is 
much higher than the usually considered molecular diffu-
sion. Thus, the microperfusion contributes to the measured 
apparent diffusion only when low b-values are used and is 
therefore a marker for motion sensitization physical proper-
ties of the applied gradient scheme. Lemke et al. have 
shown that the IVIM Model perfusion fraction f parameter 
can be used to successfully delineate between pancreatic 
cancer and healthy tissue, thanks to the typically hypoper-
fused nature of pancreatic tumours [7]. He also demonstrat-
ed, using a vascular suppression technique, that this perfu-
sion parameter f is directly correlated to the vascular 
component in pancreatic tissue. Thus, we can assume that 
areas of where the perfusion fraction f is estimated to be 
very low correspond to areas of hypoperfusion which are 
likely areas of adenocarcinoma when occuring within ob-
vious pancreatic lesions. Additionally, due to differences in 
the level of damage to tissue microcirculation caused by 
pancreatic cancer when compared to pancreatitis, the perfu-
sion fraction f parameter can likely be used in the differen-
tiation of lesions caused by these two different pathologies. 



Chenevert and colleagues demonstrated that the ADC is 
inversely correlated to cellularity in brain tumours [9]. 

It has been shown that the ADC increases after success-
ful chemotherapy, radiotherapy or a combination of both. 
There, the mean ADC can be seen as a surrogate treatment 
marker. A high proliferating tumour results in a low ADC 
mean value whereas a low proliferation tumour shows a 
high ADC mean value. 

Moreover, the ADC mean can also be used to separate 
high and low malignant areas in gliomas [10]. 

Delineation between high and low malignant areas is im-
portant for resections, biopsies and radiation therapy [11]. 
In current practice, such delineation is usually performed by 
means of manual region of interest (ROI) selection and is 
therefore highly operator dependent. Furthermore, ADC 
quantification within a ROI quantification is impeded by 
poor data resolution and a low contrast between high and 
low malignant areas. Hence, an automatic and robust ADC 
based tissue segmentation is of strong interest. 

In a work we presented at the Proceedings of SPIE Medi-
cal Imaging (2009),[12] we demonstrated that the level of 
tumour heterogeneity can be determined in an objective 
manner with minimal physician input. In this work, the 
Gaussian distributions in the different tumour areas were 
identified and through the application of an Expectation 
Maximization algorithm with Gaussian mixture model an 
objective delineation of these regions was achieved. 

At our center in Heidelberg, the German Cancer Re-
search Center, there is a strong need to foster a unified 
software platform capable of meeting the needs of several 
radiodiagnostics and radiotherapy research groups. Impor-
tant is the integration of a common data handling software 
capable of seamlessly accessing and manipulating data from 
a common research dedicated PACS. Also essential is a 
common interface to ensure consistency and convenience 
for the users and minimal maintenance effort on the part of 
the IT department. Furthermore, an automatic, advanced 
preprocessing of the raw data to easily access pre-evaluated 
images is mandatory. 

Thus, necessary preprocessing, data analysis steps and 
software tools from research projects are being integrated 
into one general software platform called “DIROlab” (Di-
agnostic Imaging in Radio-Oncology Lab) which is based 
upon the software development platform “MeVisLab” [13]. 

II. Advanced Preprocessing 

The developed software allows for automatic preprocessing. 
That means that the diffusion raw data is automatically 
processed to determine the ADC map. For each of the inte-
grated scanner pulse sequence protocols listed in Table 1 

incorporates a calculation of the ADC. Unfortunately, the 
calculated value of ADC for a given voxel was not able to 
obtain directly from the scanner. The software therefore 
incorporates a new consistent calculation of ADC directly 
from the scanner's raw data. 

Table 1 MR-Sequences 
Sequence Type Diffusion Sequence 
ECHO PLANAR IMAGING DIFFMODE_ORTHOGONAL 

 

DIFFMODE_SLICE 
DIFFMODE_READ 
DIFFMODE_PHASE 
DIFFMODE_THREE_SCAN_TR
ACE 
DIFFMODE_TENSOR 

HASTE DIFFMODE_DIAGONAL 
 DIFFMODE_ORTHOGONAL 

 
DIFFMODE_SLICE 
DIFFMODE_READ 
DIFFMODE_PHASE 

 
For automatic determination of the ADC map, we use sev-
eral equations based on the input data type. 
For DIFFMODE_ORTHOGONAL we are using the follow-
ing equation: 
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The mean ADC in the orthogonal directions read, phase, 
slice is being calculated and anisotropic traits are being 
prevented. 
For DIFFMODE_SLICE and DIFFMODE_DIAGONAL 
(gradient applied in direction 
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and thus provides an ADC calculation in only one direction. 
Unfortunately, the result is impeded by anisotropic traits. 
The trace image can be derived from equation 2. The trace 
calculation itself is shown in equation array 4. 
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array of trace weighted images we determine the ADC by 
linear least squares calculation. 
Thus, for tensor calculation, we are using the following 
equation: 
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The matrix X comprises the b-value and gradient direc-
tions. 
For several trace weighted images the calculation is denoted 
as follows: 
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III. OBJECTIVE TUMOUR HETEROGENEITY DETERMINATION 

A. Initialization and preprocessing steps 

The application allows for an objective tumour heterogenei-
ty determination in gliomas.  

In [12] and [14] we proved and showed that an Expecta-
tion Maximization algorithm with a Gaussian mixture mod-
el can be applied to objectively delineate low malignant 
from high malignant tumour. Moreover, in [12] is described 
that the seed point, which is the initialization of the algo-
rithm, does not interfere with the clustering result.  

The procedure of the clustering is shown in [14]. Firstly, 
the data is processed in to determine the ADC map. We 
used equation (5) to perform the quantification. In thepro-
cess, we used T1 weighted and T2 FLAIR images as a 
ground truth. To match the ADC and the T1 weighted and 
the T2 FLAIR image, we used a linear rigid registration 
algorithm and the normalized mutual information metric. 

Next, the GTV (Gross Tumour Volume) is determined 
upon the T1 weighted and T2 FLAIR weighted image, re-
spectively and the overlaying ADC map. Then, the two 

malignant areas are clustered with help of an Expectation 
Maximization algorithm and a Gaussian mixture model. 

 

Fig. 1: T1 and T2 FLAIR image with overlaying ADC map in red, 
seed ROI definition and defined GTV by the physician  (see [14]) 

B. The EM algorithm with Gaussian mixture model 

The EM algorithm with Gaussian mixture model incorpo-
rates two steps, namely the Expectation and the Maximiza-
tion step, respectively. 
In the Expectation step the cluster probabilities are being 
determined, i.e. kγ is being calculated. 
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Here, the Bayes Theorem is being used to calculate the 
cluster probabilities. 
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 comprises the total probability and 

represents the whole Gaussian mixture model. 
The Maximization step uses the posterior probability to 

recalculate the model parameters. ),,( kkk μπ ∑ Then, we do 
have the following Log likelihood equation to maximize: 
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Fig. 2: i): Conservative ROI drawn by the physician: T2-FLAIR overla-

id with ADC map in red, (ii): Conservative ROI drawn by the physician: 
T1 overlaid with ADC map in red. The blue circle indicates the conserva-
tive high malignant area, the yellow circle indicating the low malignant 



area, (iii): Clustered area: yellow indicates the posterior probability 
)( kγ for the high malignant area (see [12]) 

C. Refining the clustering result 

We encountered some problems concerning the cluster-
ing result. First, overlaps were found in the range of intensi-
ties representing tumour and normal tissue. Second, over-
laps between the intensities of low malignant tissue and 
cerebrospinal fluid were identified. 

For the second issue we found a solution in [12] with the 
application of a binary T2 FLAIR mask. Thus, the cere-
brospinal fluid is completely suppressed in the clustering 
results. The first issue still remains unsolved and in [12] we 
consider some options, such as using more sophisticated 
algorithms with pre knowledge. 

IV. A TOOL MAINLY DESIGNED FOR THE DELINEATION OF 
PANCREATIC TUMOUR 

A second important use of our software tool was in the 
diagnosis of pancreatic tumours based on the perfusion 
component of the diffusion weighted signal decay [I]. Pan-
creatic tomours are typically seen as hypoperfused areas in 
contrast CT and MRI studies. As there is a safety risk asso-
ciated both with the ionizing radiation of CT and the use of 
contrast agent in both CT and MRI, a non-contrast agent 
MRI technique was desired. Diffusion weighted imaging 
(DWI) is a MRI technique which does not require contrast 
agent and is influenced by the amount of perfusion of the 
studied tissue [5]. We therefore decided to quantify the 
perfusion component of the DW-data to use in the delinea-
tion of hypoperfused pancreatic lesions. Several different 
techniques were used to extract the perfusion component 
from the DW-data. Specifically, we established the follow-
ing methods to qualitatively and or quantitatively represent 
the perfusion component of the DW-data: 
Determining the R-Squared value which denotes the lineari-
ty of the decaying signal, 
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scribing the signal decay. 
Using the IVIM-Model [1] and determined the F parameter. 
Specifically, we used a Levenberg Marquardt algorithm and 
an analytically determined Jacobian descent, as a non linear 
least squares method, to fit the IVIM function denoted as 
follows: 
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S +−− +⋅−=  where f represents the perfusion 

fraction or the volume fraction of the capillary vessels in a 
voxel and was the most prominent candidate for delineation 
[I]. D* denotes the pseudo diffusion constant which is con-
nected to the velocity of the blood. 
Each of these methods were used to generate perfusion 
maps of DW-data and are currently being evaluated for 
pancreatic cancer delineation. 

V. CONCLUSIONS  

An application capable of an automatic ADC determination 
and to efficiently delineate high malignant from low malig-
nant tumour in gliomas and moreover to delineate pancrea-
tic cancer from normal pancreatic tissue in an efficient way 
was presented. Thus, providing an application to conve-
niently preprocess and postprocess diffusion weighted im-
ages in a scalar way. 
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