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Abstract

Quantitative neuroimaging techniques have become emerging technologies within clinical
practice. In this paper, we survey a few clinical applications where quantification meth-
ods have received increasing attention, namely in the area of brain atrophy, lesion load
computation, and quantification of diffusion processes. We focus on the reliability and
reproducibility of such methods and will use the example of quantitative diffusion tensor
imaging to discuss methodological details. There, we show possible avenues for evaluating
correctness and reliability. On the one hand, we show results from our novel hardware
phantom experiments, where axonal fibers are emulated by synthetic industry fibers. On
the other hand, we present a new framework for constructing software phantoms which can
be used to evaluate, for example, the impact of partial volume effects in case of axonal loss
as to be found in multiple sclerosis. Advantages and disadvantages as well as pitfalls of
quantification and evaluation techniques are illustrated throughout the paper.

Keywords: quantification, brain atrophy, lesion load, multiple sclerosis, diffusion tensor
imaging, phantoms

1 Introduction

Quantitative neuroimaging techniques allow for comparisons between subjects and over
time. Cerebrovascular diseases, neoplasia, epilepsy, infection, inflammation, demyelination,
psychiatric diseases, neurodegenerative diseases, traumatic injuries and pediatric diseases
are only a small subset of the whole range of diseases where quantitative neuroimaging
techniques have already proven useful [27, 64]. In most cases, however, these methods
severely depend on parameters and physical properties of the image acquisition process, on
assumptions and models, as well as on user-dependent inputs. As a consequence, the reli-
ability of a given quantitative method is of paramount importance within clinical settings,
where therapy decisions might be drawn from individual measurements.

Before discussing their reliability, we should note that quantification algorithms compare
and analyze quite different properties such as morphology or anatomy (MR T1/T2 relax-



ation etc.), local tissue structure (diffusion, magnetization transfer), functional properties
(perfusion, functional MRI), as well as atrophy and other volumetric information (typically
based on anatomical imaging). Also, the precision required for a specific clinical question
and influencing factors of the acquisition and quantification process have to be carefully
taken into account. To examine the reliability, several different methods and techniques
exist:

e Phantom data: Image data acquired from phantoms are very useful in medical image
analysis and quantification as they typically incorporate a precisely known ground
truth. While software phantoms allow for modeling arbitrarily shaped complex struc-
tures within software, hardware phantoms are limited by the manageability of the
used materials and their physical properties. Conversely, realistic imaging artifacts
such as noise, spatial distortions, intensity nonuniformity, metal artifacts, etc. can
easily be acquired by placing hardware phantoms in real scanners, and hard to sim-
ulate on the basis of software phantoms. We will describe related literature as well
as our own novel results of software as well as hardware phantoms in Section 3.

e Bootstrapping techniques: The idea of this approach is to estimate the error of some
variable by computing the probability distribution from the data itself. Having an
original object computed from a list of data (e.g., voxel values, numbers, sequences),
bootstrapping methods construct a new list with the same number of elements from
the original list by randomly picking elements from the list. Any one element from
the list can be picked any number of times. Bootstrapping has been used, e.g., in
DTI quantification [6, 33, 36], segmentation [18] as well as in tumor diagnostics [15].

e Patient vs. volunteer studies: Although quantification algorithms may achieve reliable
results for test data sets from healthy volunteers, algorithms can fail for real patient
data. Thus, it is often crucial to perform the quantification and comparisons for both
groups.

e Scan-rescan evaluation: This very well-known and often used technique has been uti-
lized for testing the reliability of quantification tasks, mainly in the area of volumetry
and lesion quantification. Furthermore, the reliability of some DTI quantification
studies have been examined with respect to scan-rescan reliability where subjects are
scanned at least two times within a certain period of time. Initial work has been done
where inter-sequence and inter-scanner variability are examined by histogram analy-
sis, but only based on magnetic resonance (MR) images of healthy volunteers [11, 32].
Disease-induced variations, if they are not the target of a measurement procedure,
still pose open questions and have to be examined in the future.

e Inter- and intra-observer studies: While inter-observer studies are mainly used to de-
tect user-induced systematic errors in a quantification process, intra-observer studies
might identify statistical errors. However, many authors rely on the inter- and intra-
observer variability when assessing the practical usefulness of a presented method
and oversee that the scan-rescan variability typically is greater by some large factor.

For all evaluation techniques and corresponding quantification parameters it is important
to be aware of possible pitfalls in order to set up appropriate testing environments. The



most important pitfall is the presence of partial volume effects (PVE) as virtually all
quantitative imaging methods are influenced by these. Thus, PVE have to be taken into
account not only during the quantification, but also during possible preprocessing steps of
data like fMRI, DTI, or perfusion images. Inter-observer studies are often insufficient as
the effective precision of a method typically goes far beyond its inter-observer variability.
Moreover, if measuring the progression of a disease by the differences between single time
points, it is important to know that the relative error of the difference is significantly higher
compared to the relative error of the single measurements.

This paper will survey three major clinical application fields of quantitative neuroimaging
where reliability plays a crucial role (Section 2) and will go into more detail at the example
of quantitative diffusion tensor imaging (Section 3), followed by a concluding remarks on
remaining methodological issues.

2 Selected Applications of Quantitative Neuroimaging

This section outlines three different areas of quantitative neuroimaging, namely atrophy
quantification, lesion volumetry, and the quantification of white matter fiber structure or
integrity. While brain atrophy quantification and the volumetry of brain lesions, most
prominently in multiple sclerosis, are already widely-used, the quantification of white mat-
ter fiber structure utilizing diffusion tensor imaging (DTI) is still in an early stage and
will have to reveal its full potential. This is not only because of the fact that diffusion
tensor imaging is a relatively new imaging technique, but also because of its complexity
and the large number of influencing factors that may affect the quantification results. We
have chosen these three areas as they are complementary with respect to their complexity,
their underlying algorithmic ideas, their areas of application, and, not least, their specific
methodological problems.

2.1 Quantification of Brain Atrophy

Various indications exist for global and regional brain volume measurements. Major fields
of application are diagnosis, disease monitoring, and evaluation of potential treatments in
MS [14, 13, 22, 41, 46, 51, 53] and neurodegenerative diseases, most importantly AD [9, 25].
Rudick et al. [51] propose the BPF, which they define as the ratio of brain parenchymal
volume to the total volume within the brain surface contour, as a marker for destructive
pathologic processes in relapsing MS patients. De Stefano et al. [14] found substantial
cortical GM volume loss in MS. They propose that neocortical GM pathology may occur
early in the course of both relapsing-remitting and primary progressive forms of the disease
and contribute significantly to neurologic impairment. In addition to a process that is sec-
ondary to WM inflammation, they also assume an independent neurodegenerative process,
which mainly affects GM and raises the need for robust measures to independently quan-
tify WM and GM volumes. Guttmann et al. [31] described the significance of white matter
volume loss even in normal aging. They used the popular EM segmentation algorithm to
perform a weighted voxel count over tissue classes for volumetry. These statistical and
fully automatic methods work best on multi-spectral data, in this case T2 and PD. Many
other whole brain atrophy quantification approaches rely on T1-weighted 3D sequences.



Therein, the importance of brain extraction accuracy has been stressed by Battaglini et
al. [7]. Hahn et al. [32] have compared three different T1 based atrophy quantification
techniques with respect to scan-rescan and inter-scanner variability as well as resolution,
nonuniformity, and noise effects.

2.2 Quantification of Lesion Load in MS

Volumetric analysis of focal brain lesions in multiple sclerosis (MS) is an important issue
mainly in therapy monitoring, but also for differential diagnosis [19]. Frequently, the lesion
volume change has to be determined, either by independently segmenting serial MR imag-
ing examinations or by subtraction imaging. Duan et al. [17] have compared those two
techniques by assessing the relationship to brain atrophy and disease duration and have
examined their scan-rescan reproducibility. Ding et al. [16] have developed a method for
volumetric quantification of brain tissue studies based on fuzzy clustering of multiparameter
MR images.

In order to show the clinical relevance of a proposed quantification method, its repro-
ducibility and accuracy have to be validated. Rexilius et al. [50] have tested the reliability
of lesion volumetry analysis using lesion phantoms. Artificial lesions differing in shape, size
and orientation are placed in real MR data so that several new artificial data sets can be
created. Based on these software phantoms, an evaluation is performed including manual
contouring by three human experts and two different semiautomatic approaches (with and
without explicit modeling of PVE). All experts overestimated the true lesion volume where
the median overestimation was about 50%. Only the quantification approach including ex-
plicit PVE modeling leads to good results with low error rates. Their results clearly show
the importance of an improved gold standard in lesion volumetry beyond voxel counting.
Tofts et al. [58] try to circumvent the partial volume problem in lesion volumetry by a
measure of object strength.

2.3 Quantification of White Matter Fiber Structure

The possibility of quantifying DTT parameters has established a whole range of new clini-
cally useful applications and research studies with focus on monitoring disease progression
like MS or ALS [1, 10, 29], establishing surrogate markers in assessing the grade of brain
tumors [3, 12, 61] or initiating therapies to ensures the best possible development of chil-
dren [49]. In several studies it has been shown that modified values of fractional anisotropy
(FA), relative anisotropy, or diffusion strength are an indicator of diseases affecting white
matter tissue [10, 29, 24, 55, 57, 61]. Multiple sclerosis lesions have been investigated by
ROI-based analysis [29] and voxel-wise FA comparisons where it has been found that FA
changes occur in areas containing lesions and in areas of normal appearing white matter [10].
Moreover, methods for tract-based quantification have been developed [1, 23, 39, 40, 54]
where parameters are computed depending on the local curvature or depending on the
geodesic distance from a user-defined origin. They allow the clinicians to automatically
determine DTI derived parameters along fiber bundles and have already been used for a
reproducible quantification of fiber integrity profiles in small structures like the cingulum
and the fornix [56], and for mirroring disease progression and executive functioning in MS



Figure 1: DTI data of our hardware phantoms have been acquired on two scanners (left:
Siemens Magnetom Verio 3T, right: Siemens Allegra 3T head scanner). In the right image, a
cylindrical fiber phantom can be seen.

patients [24]. Probabilistic tracking methods [26, 62] allow for tracking into regions of low
anisotropy and are also used to provide a quantitative measure on the probability of a
connection between two regions. Session reproducibility and subject variability on fiber
tracking algorithms have been examined by Heiervang et al. [34]. They found that data
sets acquired by only 12 gradient directions are sufficient for reproducibly defining large
fiber bundles like the corpus callosum or the pyramidal tracts, but may not be used for
quantifying smaller fibers tracts like the optic radiations. For those fiber tracts, more
gradient directions lead to remarkably better results.

3 Learning by Example: Evaluation of Quantitative DTI

Fiber tracking and quantification algorithms are obviously approximations of the reality
not only because of the above mentioned pitfalls, but also due to limited spatial resolution
(typically a few millimeters) model assumptions (e.g., diffusion assumed to be Gaussian
distributed), user-defined parameter settings, and physical imaging artifacts resulting from
diffusion sequences. Quantitative DTI, probably representing the most complex of the vari-
ous quantitative neuroimaging techniques, provides a compelling example for the evaluation
of statistical and systematic errors.

Correctness, plausibility, and reliability of both fiber tracking and quantification tech-
niques have mainly been verified using histologic knowledge [35, 63, 65]. In some few
animal studies, manganese has already been used as tracer to directly examine the dif-
fusion process [44]. First quantitative results with respect to precision, uncertainty and
reproducibility have also been published [6, 8, 36]. Behrens et al. [§] estimate the local
probability density using a model describing the diffusion process. The model is used to
determine the probability of a connection between two points and, therefore, is used as
a quantitative measure for the correctness of the fiber tracking results. Jones [36] makes
use of the bootstrapping method in order to compute cones of uncertainties showing a
95% confidence angle. Basser et al. [6] propose a Gaussian distribution that describes the



Figure 2: Two hardware phantoms constructed from 8um polyfil industry fibers. The fibers are
enclosed by a black heat shrink tube to avoid that larger spaces between single fibers occur.

variability of the tensors in the ideal case where the image is only disturbed by radio fre-
quency background noise. In combination with bootstrapping, where the real variability
is measured, they are able to benchmark the quality of DTI data. Thereby, wavelet-based
methods help them to reduce noise and to preserve borders between different tissue classes.

Phantoms, modeling physically plausible fiber bundles that conform (partially) with
human anatomy are important in order to examine different quantification algorithms with
respect to the points mentioned above. A phantom must allow to steer the respective
DTTI data generation under controlled conditions, either using a real MR scanner (physical
phantom) or by the help of software in a simulation setup (software phantom).

3.1 Hardware Phantoms

Hardware phantoms to assess DTI can be created from physical materials such as silk
threads or dialysis tubes [20, 21] and placed in a water basin for acquiring the diffusion
weighted images. In our own experiments, we have used 8um polyfil fibers for constructing
kissing, crossing, and straight fiber bundles (see Figures 1 and 2). We have successfully
tested them with two different scanners (Siemens Magnetom Verio 3T as well as Siemens
Allegra 3T head scanner) and have examined the variability of DTI quantification results.
Both scanners show the same behavior that the results strongly depend on the selected
resolution, the number of gradients, the measurement time, the number of repetitions, the
necessary postprocessing of DTI data including optional filtering and smoothing, as well
as on the type of fiber tracking algorithm used.

Figure 3 shows some quantification results of the axial and radial diffusivity that can be
derived from the tensor’s eigenvalues ();). For filtering, a Gaussian smoothing (using an
infinite impulse response algorithm with o = 1), followed by a resampling to an isotropic
image resolution (we selected 1.5mm?) using a cubic B-spline filter was performed. On the
one hand, filtering leads to better fiber tracking results as single outliers do not lead to a
stopping of the tracking process. On the other hand, however, it changes the quantification
results. Not only the absolute parameter values change (which can be explained by PVE
and which is described in detail in the next subsection), but also the proportions change.
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Figure 3: Quantification results using a straight hardware phantom. Axial diffusivity AD = Ay
and radial diffusivity RD = %()\2 + A3) are shown for different acquisition protocols. The data
set has been acquired on a 3T Siemens Magnetom Verio scanner.

Instead of increasing axial diffusivity with decreasing resolution or fewer directions respec-
tively, the filtering flips this behavior. This is also due to PVE, but the flipping results
from the fact that the data is resampled to a finer resolution compared to their original
ones. Furthermore, we also confirm the results of Goodlett et al. [28] where it has been
shown analytically that low direction schemes introduce a statistical bias with a clinically
relevant magnitude.

Figure 4 (left) shows fiber tracking results for different tractography algorithms (advec-
tion, deflection) of a hardware phantom, which models crossing fibers (see Figure 2, left).
Using our quantification tool [39], we can see that deflection-based fiber tracking leads to
remarkably higher FA values (about 50%) as well as to an increased number of completely
tracked fibers (also about 50%). Figure 4 (right) gives an insight into the underlying ten-
sor data and shows a volume rendering of the fractional anisotropy. It clearly depicts the
problem in the area of crossing fibers. For one of the two bundles, the fractional anisotropy
is very low and, thus, fiber tracking may abort, especially, if only the main eigenvectors
are used for tracking.

Hardware phantom experiments for high angular resolution diffusion-weighted imaging
(HARDI) data have been proposed recently [48, 59]. In [59] three different techniques
are compared, namely constrained spherical deconvolution (CSD), super-resolved CSD and
Q-ball imaging. It is shown that fiber tracking results, and as a consequence DTI quan-
tification, depend on the employed algorithm’s ability to resolve crossing fibers, and to
provide accurate estimates of their orientations.

Overall, the advantage of hardware phantoms compared to software phantoms is that
MR images can be acquired under realistic circumstances where images are disturbed by
noise, distortions and other imaging artifacts. The disadvantage is the high manual effort
which is needed for constructing and modifying such phantoms as well as the difficulty of
constructing complex or anatomically realistic structures.



Figure 4. Left: fiber tracking results of our hardware phantom, where crossing fibers are
modeled. The upper image shows fibers obtained by advection-based fiber tracking. The lower
image displays the results of deflection-based fiber tracking, where about 50% more fibers have
been tracked passing through the critical region. Right: a volume rendering of the fractional
anisotropy (FA) shows that in the crossing area the FA is very low for one of the two bundles
and, thus, fiber tracking may abort. The data set has been acquired on a 3T Siemens Allegra
head scanner.

3.2 Software Phantoms

In contrast to hardware phantoms, software phantoms allow for an easy an exact geomet-
rical description of arbitrarily shaped fibers and of an automatic computation of the cor-
responding diffusion weighted-images so that no MR scanner is needed. Basser et al. [4, 5]
describe fibers by simple 2D rings in tensor fields, whereas other authors [30, 45, 60] de-
fine fibers by cylindric tubes in 3D tensor fields. Thereby, tracts are defined by circular
helixes. A mathematical framework for simulating the partial volume between fiber and
background tissue has been proposed in [42, 43]. The authors obtain a model of a fiber
bundle by parameterizing the various features which characterize the bundle. Their results
show that a higher correspondence between experimental and synthetic DTT data exists
when the modeling a nonconstant fiber density across bundles.

As mentioned in Section 2.3, DTI quantification has become very popular for monitor-
ing the disease progression of MS. However, axonal loss is coherent with progressive brain
atrophy, and thus, PVE become more and more important. That means, that for a specific
fiber bundle the fraction of partial volume voxels containing both fiber tissue and surround-
ing tissue or cerebrospinal fluid (background) increases if demyelination and axonal loss
occur. To examine the impact of such PVE, we have developed a DTI software phantom,
which is simple by construction and which can easily be adapted to own requirements with
respect to assumed diffusion properties, image resolution, pixel noise, and the amount of
axonal loss or atrophy. The phantom, a tensor field which is used for fiber tracking and
quantification, consists of background, tissue as well as partial volume voxels and describes
a straight fiber bundle. For constructing the phantom, a quasi-continuous tensor field is
modeled where initially only background and tissue exist. The background is described by
spherical tensors (FA=0) whereas the tissue is modeled by ellipsoids with FA=0.578, see



Figure 5. The diffusion strength of background voxels has been chosen four times higher
than in tissue which is comparable to the proportion as it can be found in the human
brain. We emulate axonal loss arising from progressive brain atrophy by decreasing the
thickness of the tissue (see Figure 5), i.e., we replace tissue voxels by background voxels.
Afterwards, for such a tensor field, diffusion weighted images are derived using a fixed
gradient scheme with 30 directions [37]. To simulate an acquisition process where PVE as
well as noise effects are present, the images are sampled to a fixed resolution of 2.0mm?
(using a triangle/linear filter) and complex Gaussian noise is added [38]. Finally, the tensor
field is determined and fiber tracking as well as quantification can be performed [39]. It is
important to choose sufficiently large seed ROIs for fiber tracking to cover the whole tissue
as well as partial volume.

Obviously, the smaller the thickness, the higher is the fraction of partial volume voxels
on the total amount of tissue voxels. These partial volume voxels consist of a mixture of
background and pure tissue. As all eigenvalues of the background voxels are higher than
the eigenvalues of tissue voxels (in the background the ADC is four times higher), partial
volume voxels must also have higher eigenvalues than tissue voxels. As a consequence,
fibers resulting from partial volume voxels will have higher AD (axial diffusivity = A1) ,
RD (radial diffusivity = (A2 4+ A3)) and ADC values than pure fiber voxels. Furthermore,
the FA values must decrease. Overall spoken, the smaller the thickness, the higher is the
difference to the real DTI parameters. Specific results can be found in Figure 6. The RD
values differ by up to 70%, the ADC values by 45% and the AD values by up to 23%. The
fractional anisotropy differs (Figure 6, right) by about 20%.

These phenomenons and differences should be considered if performing DTI-based quan-
tification. ROI-based quantification tools have already been developed where PVE are
considered. Schlueter et al. [52] use an EM clustering technique to classify between tissue,
background and partial volume and are able to quantify within those specific regions after-
wards. This technique has also been extended to tract-based quantification [40]. However,
a user-independent quantification process cannot be guaranteed under all circumstances,
as for the inherent clustering process only geometric affinity measures are used without
knowledge about the underlying true anatomy.

4 Conclusion

Technical challenges [47] like improved spatial resolution, whole brain coverage, signal to
noise ratio, or magnetic susceptibility artifacts constitute the basis for reliable quantifica-
tion techniques in neuroimaging. For example, high-resolution 3D imaging sequences facil-
itated by parallel imaging will strongly contribute towards quantitative reliability. Still, in
most cases, partial volume modeling will be key to yield highly reliable quantitative mea-
surements due to the complexity or small spatial extent of both anatomical features and
pathological alterations. For example, there is increasing evidence that subtle or even sig-
nificant gray matter alterations play an important role in MS pathology [66]. Furthermore,
preprocessing algorithms for registration, regularization, or outlier rejection are substantial
influencing factors.
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Figure 5: A DTI software phantom which allows to explore the impact of axonal loss which is
coherent with progressive brain atrophy. The basic idea is to define a tensor field where the
thickness of the anisotropic region can be modified and where both the extent of PVE and the
amount of noise can be defined by the user. The images show the borders of tracked fibers for
differently chosen thicknesses.

In the case of quantitative DTI, the assumption of a Gaussian diffusion process may not
be adequate in areas of complex fiber structures like crossing or kissing fibers not only for
fiber reconstruction but also for quantitative assessment. This problem has recently been
addressed by multiple-compartment models, diffusion spectrum imaging, spherical decon-
volution and persistent angular structure MRI (PAS-MRI), where higher order tensors or
probability distributions describe the actual diffusion process. Assaf et al. [2] have already
shown that with g-space imaging the difference of values in the normal appearing white
matter of patients with multiple sclerosis is more pronounced than with DTI. However,
virtually all techniques based on high-angular resolution diffusion imaging (HARDI) data
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Figure 6: The plots show the dependency of DTI parameters on the chosen thickness of the
anisotropic tissue of our software phantom.

are still in an early state and are subject to improvement with respect to acquisition and
postprocessing time so that they become useful for clinical routine.

We have shown several examples in the context of neuroimaging where quantification
techniques play an important role and have presented and discussed software and hard-
ware phantoms for measuring their precision and reliability. Without such evaluation
basis, several pitfalls and systematic errors might remain undetected. Although substan-
tial methodological effort has been made by several authors in the area of quantitative
neuroimaging, further examinations are still urgently required. This is due to the immense
complexity and the amount of influencing parameters throughout the whole pipeline of
acquisition, processing, and quantification.
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