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ABSTRACT

We introduce novel data structures and algorithms for clustering white matter fiber tracts to improve accuracy
and robustness of existing techniques. Our novel fiber grid combined with a new randomized soft-division
algorithm allows for defining the fiber similarity more precisely and efficiently than a feature space. A fine-tuning
of several parameters to a particular fiber set - as it is often required if using a feature space - becomes obsolete.
The idea is to utilize a 3D grid where each fiber point is assigned to cells with a certain weight. From this grid, an
affinity matrix representing the fiber similarity can be calculated very efficiently in time O(n) in the average case,
where n denotes the number of fibers. This is superior to feature space methods which need O(n2) time. Our novel
eigenvalue regression is capable of determining a reasonable number of clusters as it accounts for inter-cluster
connectivity. It performs a linear regression of the eigenvalues of the affinity matrix to find the point of maximum
curvature in a list of descending order. This allows for identifying inner clusters within coarse structures, which
automatically and drastically reduces the a-priori knowledge required for achieving plausible clustering results.
Our extended multiple eigenvector clustering exhibits a drastically improved robustness compared to the well-
known elongated clustering, which also includes an automatic detection of the number of clusters. We present
several examples of artificial and real fiber sets clustered by our approach to support the clinical suitability and
robustness of the proposed techniques.
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1. INTRODUCTION

Over the last few years, diffusion imaging techniques like diffusion tensor imaging (DTI), diffusion spectrum
imaging (DSI) or Q-ball imaging (QBI) received increasing attention, especially in the neurosurgical community
with the motivation to identify major white matter tracts afflicted by an individual pathology or tracts at risk
for a given surgical approach.1,2

An explicit geometrical reconstruction of major white matter tracts has become available by fiber tracking
(FT) based on the reconstructed tensor field.3,4 Rather than requiring manual segmentation on every image
slice, FT uses the directional information of the diffusion tensor to trace diffusion paths in 3D starting from a
seed region.4 For visualizing the fibers, the idea of streamtubes along with different color coding attributes (e.g.,
direction, uncertainty5,6) has been discussed.7–10

Fiber clustering offers an opportunity for improving the perception of the fiber bundles and connectivity in the
human brain by grouping anatomically similar or related fibers. Due to the large number of points constituting
each single fiber, the problem of efficiently computing the similarity between fibers is usually solved by using a
feature space (FS).11,12 FS methods map the high dimensional data to a low dimensional FS from which the
affinity matrix is calculate by applying a distance function. Thus, each fiber is more or less well-characterized
by a small set of calculated features like co-variance, main direction or the center of gravity.

Given the affinity matrix, a clustering algorithm can be applied. A recently proposed approach12 recursively
determines a minimal normalized cut to partition a fiber similarity graph into two subsets. This is done until
the value of the cut is larger than a predefined threshold on which the number of clusters depends. Also the
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Figure 1. Overview of data processing for spectral fiber clustering.

unsupervised fuzzy c-means clustering13 or the k-nearest neighbor approach14 utilizing a segment-based similarity
index have been proposed for fiber clustering. O’Donnell et al. use a k-way normalized cuts clustering algorithm
based on a modified Hausdorff distance for computing the similarity between paths.15

Jonasson et al.16 consider the problem of clustering fiber tracts obtained from high angular resolution
diffusion images where more than one fiber orientation within a single voxel is possible. Instead of a FS, they
use a voxel grid to determine a co-occurrence matrix for clustering. El Kouby et al.17 developed a method where
the connectivity information of ROIs defined by a Talairach grid is used for clustering. Similar to FS methods,
this reduces the precision of the fiber similarity.

Other approaches propose a B-spline representation of the fiber tracts for a pairwise comparison18 or a soft
clustering based on pseudo coloring.19 A method for evaluating fiber clustering algorithms was proposed by
Moberts et al.20 Outside the area of medical imaging, clustering algorithms are used, e.g., for analyzing gene
expression data21 or processing of point-sampled geometry.22,23

In this paper, we introduce a novel framework that allows for fiber clustering with an automatic determination
of the number of clusters. For that purpose, we propose to use spectral clustering on top of an affinity matrix
derived from the fiber grid (an outline of our framework is given in Figure 1).

We show that our new grid-based approach described in Section 2 defines fiber similarity more precisely than
FS methods. In Section 3 we show how the cluster number is determined by our new eigenvalue regression method.
Moreover, our clustering algorithms, optimizations and adaptions of two image segmentation methods24,25 are
briefly summarized. In Section 4 results are presented which show that our algorithms are more robust than
Elongated k-means25 (automatically determining the number of clusters). We conclude with a discussion and
show possible directions for future work.

2. FIBER SIMILARITY

In contrast to a feature space (FS) — which neglects most of the metrical information about the fibers for the
sake of a low computational time — the idea of the fiber grid (FG) is to gather more accurate spatial information
in order to calculate a fiber affinity matrix. An obvious approach to account for the metrical information would
be a point-by-point distance determination between all fibers which is in O(n2) and thus is too expensive for
treating large fiber sets. By approaching the distance problem in a different way, the FG not only manages to
preserve the benefits of accurate spacial information but is also in O(n) which is even faster than the FS method.

Instead of comparing the fibers pointwise, the space can be divided into 3D cells of equal size. For simplicity,
we chose a cubic grid with a side length of d. Then, each fiber point is assigned to the cell containing it, recording
a label for the fiber it belongs to and a weight, depending on the assignment method (described later in this
section). Using a suitable mapping of the fiber points to the cell indices, the assignment of one point takes
constant time. Therefore, all points can be assigned to their corresponding cells in O(n). Let wi(x, y, z) denote
the sum of all weights stored in cell (x, y, z) arising from fiber i. The affinity matrix A with entries aij can now
easily be calculated by increasing aij if fiber i and j contain data points that are assigned to the same cell:

aij :=
∑

(x,y,z)

wi(x, y, z) · wj(x, y, z) i 6= j



g(x) := arctan
(

σ

(
x− d + 1

2

))
a :=

we − wm

g(0) + g(1)− 2g(0.5)

b :=
2g(0.5) · (wm − we)

g(0) + g(1)− 2g(0.5)
+ wm

f(x) := a (g(x) + g(1− x)) + b

Figure 2. Importance factor function and its mapping to fiber position with we = 1 wm = 0.5, d = 0.5 and σ = 10

The matrix A is normalized by multiplying it with 1/ maxi,j∈{1...n} aij and setting its diagonal entries to 1. Note
that the multiplication of the weights allows for a better description of the fiber similarity than a simple addition.
Only if using the multiplication, it can be distinguished between balanced and unbalanced cells with respect to
the number of fiber points from two fiber i and j.

Considering the limited spatial fiber density, one can assume that a single cell does not contain more than
a fixed number of fibers in the average case. As a consequence, the time to calculate the fiber affinity resulting
from a single cell is independent of the total number of fibers, thus in O(1). As the number of cells which contain
any data points is proportional to the number of fibers, the overall calculation of the affinity matrix is in O(n).

A crucial detail of this fiber affinity measure is the way in which fiber points are assigned to grid cells:

1. Hard Division Each point is assigned to the cell containing it with a constant weight. While being very
fast, this method has the disadvantage that two close points of fiber i and j lying on opposite sides of cell
boundaries do not contribute to aij of the affinity matrix.

2. Soft Division Each point is additionally assigned to the surrounding cells. The corresponding weights
are reduced by a factor which takes the distance from the central cell and the number of cells at the same
distance into account. Thus, each shell of cells around the center cell gets the same weight. This allows
for a more reliable clustering of fiber bundles with diameters exceeding the grid parameter d, as even two
fibers which never share neighboring cells can now both have an affinity to a third fiber in between. For
time efficiency purposes, each data point can be assigned randomly to only one cell if a sufficient point
density of the fibers is given.

In large bundles of fibers, distinguishing features are not evenly distributed over each fiber, but can rather be
found at their starting and ending sections. Thus, we introduce an importance factor to each fiber point that
modifies the weight to be assigned to a cell by a function of the point’s position on the fiber. A function which
has proven very useful in our experiments because of its good adaptivity through some natural parameters is
shown in Figure 2. The four parameters are we (weight of the end points), wm (weight of the middle points), d
(width of the middle section) and σ (sharpness of the transition between end weights and middle weights). The
position x of the fiber point is taken to range from 0 to 1.

3. SPECTRAL FIBER CLUSTERING

As spectral clustering algorithms are more suitable for identifying non-convex clusters than conventional clus-
tering algorithms like k-means, they are rapidly becoming popular in fields like image segmentation or speech
recognition. The primary input of any spectral clustering algorithm is an affinity matrix which is usually nor-
malized to account for different intracluster connectivity (denoted as Â). The eigenvectors of Â are used to find a
semi-optimal cut for partitioning a graph with edges weighted by the corresponding Âij . Most spectral clustering
algorithms exploit only one eigenvector (e.g., the second-largest∗) in order to cut the graph into two subgraphs,

∗“largest” eigenvector denotes the eigenvector corresponding to the largest eigenvalue.



1: Compute affinity matrix A using the FG method.
2: Normalize A according to Â = D− 1

2 AD− 1
2 with D =

diag(
∑d

j=1 Aij)
3: Calculate eigenvalues of Â. Sort and index (starting with one).
4: Form two groups: G1 contains the two largest eigenvalues, G2

the smaller eigenvalues down to a reasonable minimum.
5: while |G2| ≥ 2 do
6: Linearly fit eigenvalues of the two groups to their indices

(separately)
7: Store the total error of both fits with index of (minx∈G1(x))
8: Remove largest eigenvalue from G2 and add it to G1

9: Search for the smallest total error. Its index is the number of
clusters.

Figure 3. The algorithm detects the number of clusters automatically using our eigenvalue regression. The red straight
lines in the right plot indicate the optimal linear fits for an example clustering. Moreover, the total error of both fits is
shown.

and are performed recursively to yield k clusters.12 However, it has been shown that a better clustering result
can be obtained by using more eigenvectors and by cutting the graph directly into k clusters.26

In this section, we propose our novel eigenvalue regression to determine the number of clusters automatically.
This approach is combined with our multiple eigenvector clustering (MEC), an adaption and optimization of24

for our purpose of fiber clustering. It works accurately with the affinity matrix from the FG as an input.

For comparing our new approach, we also implemented the elongated clustering25 (EC), a general spectral
clustering algorithm that also determines the number of clusters automatically. We have optimized this algorithm
for our fiber clustering problem. To the best of our knowledge, this is the only spectral clustering algorithm
which uses multiple eigenvectors and allows for an automatic determination of the number of clusters. This
method is described at the end of this section.

3.1. Multiple Eigenvector Clustering using Eigenvalue Regression

3.1.1. Eigenvalue Regression

From graph theory it is well-known that clusters in graphs correspond to eigenvectors of the affinity matrix with
large eigenvalues. Depending on the intercluster connectivity, the normalized affinity matrix has more or less
eigenvalues close to 1. The relevant eigenvalues for nearly separated clusters are bordered by an eigengap, the
largest difference between two consecutive eigenvalues in a list of descending order.
Thus, for sparse graphs, the number of clusters can easily be found by searching for the largest gap between
two eigenvalues. However, in practice, intercluster connectivity is not negligible and thus there is often no
unambiguous eigengap corresponding to a comprehensible number of clusters. If a rigid eigengap method is
used to determine the number of clusters, only the large and separated clusters can be found (by any clustering
algorithm), therefore, inner clusters within coarse structures cannot be identified.
Our eigenvalue regression works as an eigengap detector for sparse graphs but can also detect a general change
of the gradient of the eigenvalues. We plot the eigenvalues against their indices in the list of descending order
and split this plot at such an index that the resulting halves can be linearly fitted with smallest error. Figure 3
illustrate our idea based on optimal linear fits.

3.1.2. Multiple Eigenvector Clustering

The algorithm proposed by Ng et al.,24 which takes the affinity matrix A as input, constitutes the basis of our
clustering algorithm. It has to be normalized to account for different intracluster connectivity. We denote the
normalized affinity matrix as Â. In contrast to Ng et al.,24 we perform a complete singular value decompo-
sition (translation of the Algol procedure SVD27) on Â in order to get all eigenvectors and eigenvalues. If it
seems reasonable to assume a maximum number kmax of clusters for a given fiber set, an algorithm like the



1: Execute steps 1, 2 and 3 of the eigenvalue regression (Figure 3).
2: Estimate the number of clusters k by eigenvalue regression.
3: Assemble the k ”largest” eigenvectors as columns of a matrix X and

normalize its rows to have unit length → X̂.
4: Treat each row of X̂ as a point in Rk and cluster the points into k

clusters (for this purpose we use complete linkage).
5: for all i do
6: Assign fiber i to the cluster of row i of X̂.

Algorithm 1: Multiple eigenvector clustering using eigenvalue regression

Arnoldi/Lanczos iteration can be used to calculate only the kmax largest eigenvalues and corresponding eigen-
vectors so that computation time can be reduced. The final number k of clusters is determined by our eigenvalue
regression as described above. Afterwards, a matrix X̂ is built in two steps. The k largest eigenvectors are
assembled as columns of a matrix and its rows are normalized afterwards. Finally, the rows of X̂ are treated as
k-dimensional vectors. Performing a clustering algorithm on these vectors yields the desired result. We achieved
best results using a hierarchical complete-linkage clustering algorithm. The indices of rows of X̂ which are put
into one cluster correspond to the indices of fibers in A which belong to the same cluster. The reasoning behind
this algorithm as well as the advantage compared to a direct application of a clustering algorithm on the affinity
matrix is described in.24 We can summarize our optimizations for the purpose of fiber clustering (Algorithm 1)
as follows:

• The affinity matrix A is provided by our FG method.

• The number of clusters is determined automatically by eigenvalue regression.

• Clustering of the rows of X̂ is performed using complete-linkage28 which is faster than k-means.

3.2. Elongated Clustering

Sanguinetti et al.25 showed that a matrix consisting of the eigenvectors of the normalized affinity matrix implicitly
contains the key information for an automatic detection of the number of clusters. The rows of this matrix are
clustered using the Elongated k-means algorithm which accounts for the elongated structure of the clusters.
Elongated k-means requires the a priori knowledge of two parameters: λ and ε which strongly influence the
number of clusters.25 We optimized the algorithm in order to compare its abilities to MEC with eigenvalue
regression (Algorithm 2):

• The affinity matrix is calculated using the FG method.

• At each call of Elongated k-means it is initialized by preclustering with a complete linkage algorithm.

• In Elongated k-means: check for returning results to avoid periodicity.

4. RESULTS

All algorithms and data structures have been implemented in C++. As our fiber grid leads to the same clus-
tering results in a considerable range of values for the grid parameter d, this parameter was always determined
automatically by setting it to an experimentally determined fraction of the length of the fiber set’s bounding
box (we set it to a 1/15 of the smallest side of the bounding box). We have tested our approach with artificial
and real fiber sets. For computing the real data, DTI images from a glioma patient were acquired on a 1.5T
Siemens Sonata (image resolution 1.875 × 1.875 × 1.9 mm3, 60 slices, 6 gradient directions) and were filtered
to an isotropic voxel size of 1.0mm3 using a cubic B-spline filter. From that data, fiber sets were computed by



1: Execute steps 1, 2 of eigenvalue regression (Figure 3). Calculate eigen-
vectors of Â.

2: Set the temporary number of clusters, q, to q = 2.
3: Arrange the q largest eigenvectors as columns of a matrix Xq.
4: Set appropriate (empirically) values for sharpness (λ) and origin prox-

imity (ε) for Elongated k-Means’ distance function.
5: repeat
6: Cluster the rows of X using hierarchical clustering.
7: Determine the row with the largest euclidian norm in each cluster j.
8: Initialize the centers of the q clusters with the corresponding rows

from step 7.
9: Add the q + 1 eigenvector to Xq getting Xq+1 and initialize the

q + 1th center in the origin.
10: Perform Elongated k-means with q + 1 centers on Xq+1.
11: until No row of Xq+1 has been assigned to the q + 1th cluster (q + 1th

cluster empty)
12: for all i do
13: Assign the fiber with index i to the cluster with index j iff row i of

X̂ has been assigned to cluster j.

Algorithm 2: Elongated clustering (EC) is an iterative spectral clustering algorithm with a built-in detection of
the number of clusters using Elongated k-means

our deflection-based fiber tracking algorithm.29 For generating the artificial fiber sets shown in Figure 4, we
developed a tool that allows for interactively drawing fibers on arbitrary 3D surfaces.

Figure 6 and 7 show the corpus callosum clustered automatically by our MEC. Figure 5 shows a fiber set
including the fasciculus arcuatus, a small bundle that is difficult to recognize, and that connects two important
language regions, Wernicke’s and Broca’s area. The FG seems to provide the most suitable information for MEC
to perform fully automatic clustering. Figure 5(iv) and 5(vi) show a major disadvantage of EC, namely the high
sensitivity to one of its algorithmic parameters, ε. Small changes of ε often lead to extremely different clustering
results, or to no clustering at all. In contrast to MEC, the EC can produce clustering results of equal quality for
the FG and the FS, but the detected number of clusters is comparable to the number found by a rigid eigengap
determination, thus, identifying only coarse structures. The artificial fiber set in Figure 4 was constructed to
test whether spatially separated structures are recognized as different clusters and to what extent the different
approaches are able to find finer substructures. As Figure 4(iii) and 4(iv) show, EC with FG or with FS is only
able to detect coarse structures, where the FG leads to slightly better results compared to the FS. The eigenvalue
regression determines the conceived number of seven clusters correctly from fiber grid data (Figure 4(i)), but
cannot handle the affinity matrix produced by the FS method. Even though for the purpose of comparison the
number of clusters was manually set to seven, MEC is not capable of forming the intended clusters from FS data
(Figure 4(ii)). Only MEC combined with the FG delivers the desired clustering (Figure 4(i)).

Note that we have also implemented several other (non-spectral) clustering algorithms like hierarchical clus-
tering, partitioning clustering, and self-organizing maps to work with our novel fiber grid. In all cases, better
results are achieved than using a FS. However, all these algorithms are inferior to spectral clustering with respect
to robustness, efficiency, and automation.

5. CONCLUSIONS AND FUTURE WORK

Feeding similarity information obtained by our fiber grid to clustering algorithms that are easy-to-use provides
extremely robust and fast clustering of white matter fiber tracts. The time-consuming manual tuning of FS
parameters is obsolete so that the a-priori knowledge required for achieving plausible clustering results is reduced
drastically. Our novel eigenvalue regression is capable of determining a reasonable number of clusters as it



Figure 4. Artificial fiber set consisting of seven fiber bundles. (i) The clusters have only been correctly determined by
multiple eigenvector clustering (MEC) based on our fiber grid. (ii) Not all clusters are correctly determined by MEC
using a feature space. (iii) Only coarse clusters are found by elongated clustering (EC) using our novel fiber grid. (iv)
EC using a feature space.

Figure 5. Wernicke’s and Broca’s area. Most reasonable results (i and vi) are achieved by our fiber grid (FG). Multiple
eigenvector clustering (MEC, top row) is much more robust than elongated clustering (EC, bottom row), which is extremely
sensitive to changes in algorithmic parameters (iv and vi). If using a feature space (FS), the number k of clusters was
incorrectly determined (iii) and, thus, manually set to k:=3 (ii and v).

accounts for inter-cluster connectivity. Thus, inner clusters within coarse structures can be identified using our
extended multiple eigenvector clustering. Compared to elongated clustering which also includes an automatic
detection of the number of clusters, the MEC leads to more accurate and robust results.

We believe that this work opens up a number of avenues for future research. The computation time of our
clustering algorithms could be further reduced by more sophisticated calculations, e.g., by restricting the number
of eigenvalues and vectors that have to be computed. Furthermore, it should be examined if differently shaped
arrangements of cells with respect to the FG allow for reducing the number of cells so that the affinity matrix
can be determined more quickly.

The automatic determination of the number of clusters allows for several new applications. In the clinical
context, e.g., where multimodal imaging is used, the integration of automatic fiber clustering into fMRI data
visualization could be improved because anatomical structures which belong together can be well-separated from
other surrounding fibers by our method. Thus, time consuming manual filtering steps could be avoided.



Figure 6. Fibers of the corpus callosum are automatically clustered by our spectral fiber clustering (MEC). We use
transparent isosurfaces (with an adjustable distance to the fibers) for visualizing the clustering results.

Figure 7. Upper row: sagittal view of clustering results, bottom left: if using inverse colors, boundaries between neigh-
boring clusters are more emphasized, bottom right: clustering results projected onto anatomical image allow for easy
correspondence to 3D.
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