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Summary

Background Diffusion tensor imaging and related fibre tragkiechniques have the potential
to identify major white matter tracts afflicted by individual pathology or tracts at risk for a
given surgical approach. However, the reliabilifytleese techniques is known to be limited
by image distortions, image noise, low spatial ks, and the problem of identifying
crossing fibres. This paper intends to bridge tae lgetween the requirements of neurosurgi-
cal applications and basic research on fibre tragkincertainty. / MethadVe acquired echo
planar diffusion tensor data from both 1.5T andr36anners. For fibre tracking, an extended
deflection-based algorithm is employed with enhdnabustness to impaired fibre integrity
such as caused by diffuse or infiltrating pathatagiprocesses. Moreover, we present a
method to assess and visualize the uncertaintyboé feconstructions based on variational
complex Gaussian noise, which provides an alteredt the bootstrap method. We compare
fibre tracking results with and without variatiomadise as well as with artificially decreased
image resolution and signal-to-noise. / Findirgsing our fibre tracking technique, we found
a high robustness to decreased image resolutiosigndl-to-noise. Still, the effects of image
quality on the tracking result will depend on thepdoyed fibre tracking algorithm and must
be handled with care, especially when being usedhéurosurgical planning or resection
guidance. An advantage of the variational noise@guh over the bootstrap technique is that

it is applicable to any given set of diffusion tengmages. / Conclusion¥Ve conclude that



the presented approach allows for investigatinguheertainty of diffusion tensor imaging
based fibre tracking and might offer a perspedivevercome the problem of size underesti-

mation observed by existing techniques.
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1. Introduction

Magnetic resonance imaging (MRI) plays a major mleeurosurgical planning and decision
support by depicting lesions within their anatorhaantext, information that can be used in a
neuronavigation system. Moreover, intraoperativel lRws for objectively determining the
extent of resection during surgery (25). Over tast lfive years, diffusion tensor imaging
(DTI) received increasing attention in the neurg&al community with the motivation to
identify major white matter tracts afflicted by amdividual pathology or tracts at risk for a
given surgical approach (11, 24, 30). Colour-endod®ps of fractional anisotropy (FA)
computed from intraoperative DTI were also sucaedlgsémployed to depict the shifting of
major white matter tracts during surgery (19).

An explicit geometrical reconstruction of major weéhimatter tracts has become available by
fibre tracking (FT) based on DTI data (18). Thesibdity on intraoperative DTI data has
been shown by Nimsky et al. (20). Rather than maggimanual segmentation on every image
slice, FT uses the directional information of th€l@ata to three-dimensionally (3D) trace
major diffusion paths starting from seed pointsacseed region (2, 18). The reliability of
current DTI-based FT, however, is known to be lgditby image distortions, image noise,

low spatial resolution, and the problem of identify crossing fibres (11, 16). Therefore,



additional functional and electrophysiological irraguidance is mandatory in many cases
(11).

The problem of image distortions is most often tedato the use of Echo Planar Imaging
(EP1) for DTI, which offers fast imaging with acdaple signal-to-noise ratio (SNR). While
the possibility of distortion compensation by ppsbeessing the images, such as intra-subject
spatial alignment to a high-resolution anatomioage, is limited by the loss of image infor-
mation caused by strong distortions, novel acqarsitechniques promise to deliver mostly
undistorted images at the cost of longer acquisiiimes (21).

The dependency of DTI-FT on image noise has beshest by various researchers based on
theoretical consideration and numerical simulatidnsl2, 16, 27). The main finding reported
in literature is the mean tract deviation to inseeapproximately linearly with the distance
from the seed point and to decrease with increaSMB and diffusion anisotropy within the
fibre bundle (1, 12). Still, Yamada et al. (30) ogpd that on a standard 1.5 T whole-body
scanner with parallel imaging a scan time of l&ésstfive minutes already suffices for clini-
cally useful FT.

The dependency of the FT result on the image rasalhas not been widely described so far.
In most publications, a close to isotropic imagsoletion of approximately 1.8-2.0 mm is
used to acquire the DTI data. Tournier et al. foundhin simulated experiments that partial
volume effects have a detrimental effect for tragknarrow fibres surrounded by anisotropic
background (27). Still, the question remains if &oav image resolution and the correspond-
ing partial volume effects might also afflict thedking of larger fibre bundles. A specific
effect of currently employed FT techniques is tthat actual size of fibre bundles is underes-
timated while the direction of fibres often canwell assessed. This has been reported to be
problematic when related to neurosurgical apploceti(11). It has to be questioned whether
this underestimation is due to the limited resolutof DTl images or due to inadequacies in

existing image analysis methods.



Recently, a so-called bootstrap approach (4) has heed to visualise statistical properties of
a given FT method and a given image quality (9er€mm, a non-isotropic distribution of FT
uncertainty has been found, such as expressedeblpdthl orientation uncertainty, in accor-
dance to the regions of low anisotropy or branchiimg tracts (8, 10).

The goal of this paper is to bridge the gap betwleasic research on FT uncertainty and
neurosurgical applications and requirements. Te ¢émd, we propose an alternative method
that follows the same idea as the bootstrap approdus alternative allows in any DTI data
set to assess the geometrical variability of filbaet reconstructions corresponding to a given
FT algorithm and parameterisation in dependendenafie quality. Furthermore, we present
an FT algorithm as an extension of the deflectiased approach by Weinstein et al. (28)
with enhanced robustness to impaired fibre intgguitch as caused by diffuse or infiltrating
pathological processes. We apply these method®donstruct the pyramidal tracts in a
glioma patient and parts of the posterior corputsam in a healthy volunteer. The data
stem from a 1.5T and a 3.0T magnet, respectivalyallly, we examine in a realistic but
controlled environment the effects of resolutionl &NR on the FT results in order to assess
the feasibility of FT on low-quality scans that imide routinely acquired by current clinical

scanners in an acceptable timeframe.

2. Methods and M aterials

2.1 Image Acquisition

One patient suffering from a right hemispheric gleo(F, 73 y) and a healthy volunteer (M,
31 y) are considered. For the tumour patient, ghoar DTI data is acquired on a 1.5 T
Siemens Sonata (image resolution 1.875x1.875x1.9 r6fh slices, 6 gradient directions,
single channel standard head coil, scanning timei6, cf. Fig. 1). For the healthy volunteer,
DTI data is acquired on a 3T Siemens Allegra (imeggolution 1.846x1.846x1.6 mm3, 80

slices, and 30 gradient directions each, singlenscbbhead coil, averaged over 5 repetitions,



scanning time ~13 min.). The image noise of thesgges can easily be determined as de-
scribed by Sijbers et al. (26) and serves as basia comparison to the images including
artificially added complex Gaussian noise, cf. Se4.1.

<INSERT FIGURE 1 HERE>

2.2 Image Filtering

In many cases, DTI data is acquired using an awigiatimage resolution, i.e. the slice thick-
ness, commonly without inter-slice gap, is lardarnt the in-plane pixel spacing. Thus, the
highest encoded spatial frequency is larger altvegxt and y axis (constituting the image
plane) than along the z axis (the patient's y amisining perpendicularly to the imaging
plane). In such case, if no spatial normalizat®applied to the image data, FT results would
depend on the fibre orientation with respect to ithaging plane. For example, a highly
curved tract would be reconstructed more accuratehin in the x-y plane than within the x-
z or y-z planes.

Before FT, we consequently propose to discard ithigelst frequency content in x and y direc-
tion in order to obtain the isotropic image contgpm the primary image data with an iso-
tropic voxel size equal to the original slice tmeks (e.g. 0.8x0.8x2.5 mm3 is mapped to
2.5%2.5x2.5 mm3). To this end, the resolution rédacin x and y direction would ideally be
performed by k-space cropping in order to maintdiR image characteristics. A good ap-
proximation to this k-space operation is resampluiitp a Sinc or Lanczos filter in the spatial
domain. In this study, we use a three-lobed Landites separately along all three principal
coordinate axes.

The isotropic MR data is then interpolated in orteprovide DTI information at any spatial
position. We propose to perform a supersamplinthefdata before FT to an isotropic target
voxel size of approximately 1.0-1.5 mm using a kigbrder filter in order to enhance the

quality of FT results. This supersampling does add information to the image, but allows



for using a simple tri-linear interpolation at tla¢er tracking stage. In correspondence to the
primary resampling step, supersampling would igdadl performed by zero-filling in k-space.
Again, we propose to use a Lanczos-3 filter ingpatial domain that represents a good trade-
off between computational speed and filtering aacwyr

In addition to spatial resampling, denoising of tr@inal MRI data might be beneficial in
case of high image noise, but also induces assangtwhich cannot be warranted in general,
on the underlying signal (17). Instead of denoisihgs also common to simply smooth the
data using a Gaussian filter, while the filter vids chosen empirically according to the
respective SNR; larger filters for low SNR, andevieersa. We did not consider Gaussian

smoothing within this study.

2.3 Extended Fibre Tracking Method

The FT algorithm we employed is based on the dedfledased approach by Weinstein et al.
(28) and makes use of the full diffusion tensominfation during tracking. In contrast,
streamline-based algorithms that are commonly eyeplosuch as the FACT (Fibre Assign-
ment by Continuous Tracking) method (18), take cdosideration only the largest eigenvec-
tor representing the main diffusion direction. lamparison to the method described by
Weinstein et al. (28), we added a novel moving agerestimation of the fibre curvature and
anisotropy to the tracking algorithm, which leadsntore accurate tracking dynamics and
more robust termination criteria (23).

In most cases, FT is applied to discrete imageisthautracking algorithm leads to sub-voxel
positionsr '. Therefore, we calculate the new direction for difeusion tensor at each corner
of the cube including "* and use tri-linear interpolation for the calcwatiof the new direc-
tion at positiorr *.

Usually, the diffusion anisotropy (DA) and the catwe at the current tracking position

determine whether the tracking terminates. Tracksrgfopped as soon as the DA falls below



or the curvature exceeds some threshold value.eTloesl termination criteria are highly
sensitive to noise, because the FT could be trappadocal minimum or maximum of the
DA or the curvature, respectively. Furthermore, thkethe FT is trapped or not at some local
extremum depends unpredictably on the step sizerniar et al. who showed that the accu-
racy of FT sensitively depends on the step sizgl(2@rder to avoid this problem, we calcu-
late moving averages of both the DA and the cureatuith respect to a window on the
tracked fibre.

Since on the one hand fibre bundles with high duneaare reconstructed with streamline
more accurate than with deflection-based tracking an the other hand deflection-based
tracking is more robust to orientation uncertai(®U), we set the main vector weighting
equal to the curvature normalized by the maximpakeked curvature.

Furthermore, we scale the weighting factors for ttiimear interpolation of the new direc-
tions at each corner of the cube includifdwith (z/2 - 6), whered is the angle of uncertainty.
This curvature and OU weighting was found to sigaifitly improve fibre reconstruction
especially at the border of simulated fibre bundlegiiven white matter tracts, respectively
(23).

All image analysis methods used in this paper Haen built upon the research and devel-

opment platform MeVisLab (31).

2.4 Assessment of Fibre Tracking Uncertainty

Although an assessment of the FT with respecttantertainty is essential in clinical appli-
cations, only little work has been done in thisaala a recent paper by Jones et al. , the boot-
strap method (4, 22) was used for visualizing theeutainty of fibre orientation in conjunc-
tion with the trajectory data (10). However, theethod needs several repetitions of each

image that are not available in the standard ggttin



To overcome this problem, we present a new methadallows for an efficient computation
of diffusion weighted images with user-defined eoighile retaining the MRI noise charac-
teristics. The resulting images are used to andlysetracking uncertainty resulting from
image noise. The main idea is to add complex Ganssoise to the magnitude images. In
contrast to the bootstrap method, our techniqudsiegly a single data set so that the amount
of required original data and the time for compgtthe artificial data can be reduced dra-

matically.

2.4.1 Complex Gaussian Noise

The noise distribution of acquired MR images, eaftar 2D inverse Fourier transformation is
commonly assumed to be Gaussian (26). However, @miégnitude calculation the data is no
more complex and the noise is Rician distributed \(e now propose to add complex Gaus-
sian noise to the magnitude images, so that theendistribution is equivalent to those of
standard MR images.

Given a pixel valu(, ,| of the magnitude image,deéine a corresponding complex num-
berCs, = |Izy| + 0i because we can choose an aspip@nt on the circle of the magni-
tude, the magnitude determination of the complex $itihall being rotation-invariant. For
the moment, let us assume we would like to addenaish a complex Gaussian distribution
of width o to Czy . The resulting complex number ¢/, , = C,, + N(0,x) , where
N(0,¥) denotes a normal distributed complex numbign wean 0 and covariance matrix
> = ¢°E . Thereafter, the corresponding new magnitudaievatan be determined as
\@m,y\ (cf. Fig. 2). Now, let us assume that the Mghal I is corrupted by Gaussian noise
with variances12 . Further, lo»? denote the desivariance of the resulting image. It is
well known that, ifX; ~ N(u1,X1) anXs~ N(uo, o — 1) are émpendent variates,
then X1 4+ X5 ~ N(u1 + o, %2) . As a consequenc?, can §inp@ determined as

02 =052 — 012, SO that the standard deviation of thiseto be added » = \/s,2 — 5,2 . The



complexity of our new approach is only ingp(with s being the number of voxels, because
all new images can be derived from the single Eekisting images.

<INSERT FIGURE 2 HERE>

2.4.2 Visualizing the Uncertainty

Let o2 denote the desired noise of the images fwhich we would like to visualise the
uncertainty. Then, the difference nooe can be added to the original images as described
above.

For the resulting new data set, FT is performedaf¢small) set consisting of seed points
and the streamlines are stored and accumulatedhvétbet of streamlineS This process is
repeatedn times for the same seed points resulting in &sensisting ohim streamlines.

Now, the uncertainty can be regarded as the difterdetween the so-called superset trajec-
tories — the streamlines that results when we addaise to the original images (cf. Figs. 3
and 4 top left) — and the s8twhile the probability density of the FT uncertsims reflected

in the geometrical path distribution with#h

3. Resaults

In this section we describe the experimental sahggive a short summary of corresponding
fibre tracking results. An extensive discussiomhef results is given in the next section.

For the glioma patient we defined two seed regieash consisting af = 100 seed points at
the level of the cerebral peduncle as well as te&tidation regions in the precentral gyrus for
tracking the fibres of the pyramidal tract. For tiealthy volunteer we defined a single small
seed region witln = 20 mid-sagittally within the posterior part dfet corpus callosum. For
the pyramidal tractm=5 was chosen, whem denotes the number of how often the FT
algorithm is started each with independently getedreariational noise and for each seed

point (cf. Sec. 2.4.2). For the corpus callosumyas set to 10.



3.1 Original FT Resultsvs. Variational Noise
Figure 3 and Figure 4 (upper row) compare the woaigisuperset) FT result with that
achieved by adding complex Gaussian naise § or 10, respectively) to the images. As one

can see, this so-calledriational noise causes a widening and an aggregation of the fibres

3.2 Resolution Effects

We examined the FT result depending on the resoiuf the DW images. Before supersam-
pling the images to an isotropic resolution, we dsample them to 4x4x4 ninmor to
6x6x6 mm, respectively, also using a three-lobed Lancdter fiThe results can be found in
Figure 3 and 4 (middle row), which show that theorestructed paths are smoothed with
decreasing resolution. Moreover, new branchingeapwithin the reconstruction and others

are missed (cf. Fig. 4 middle row).

3.3 SNR Effects

We also examined the effect of adding noise tartteges. Before supersampling, we added
noise ofo = 10 andr = 20 to the images. The corresponding FT resaltsbe found in Figure
3 and 4 (bottom row). Note that the noise leads tluinning of the reconstructed fibre bun-
dles and only some new false paths are reconstrutte remarkable that all important paths
are still reconstructed despite of the bad imagdityucf. Fig. 1 bottom center).

<INSERT FIGURES 3 AND 4 HERE>

4. Discussion
Our results must be discussed with respect to tiaoenical accuracy of diffusion tensor
based fibre tracking. Current DTI protocols usedH® yield an effective image resolution of

approximately two millimetres, while the acquireNFS represents a trade-off between scan-



ning time and image quality. Due to the limitedoleson, only larger white matter tracts can
be reconstructed in principle. The anatomical amcyiof a given FT algorithm is related to
its sensitivity, i.e. its ability to delineate whitmatter tracts of a given size and diffusion
anisotropy, to its behaviour at branching or crogdibre bundles, and to its ability to accu-
rately represent the size or width of a given fitvet. From a neurosurgical perspective, the
sensitivity and the size representation are ctiisasoon as the FT results are used in combi-
nation with neuronavigation as a basis for resaajudance (11).

For most figures presented in this paper, we usgtonal noise with repeated FT under
identical starting and boundary conditions in ortterdemonstrate the uncertainty of FT.
When comparing the results with and without vaoiadl noise, a systematic widening of the
reconstructed fibre tracts can be observed witfatranal noise. This can be interpreted such
that conventional FT tends to avoid the boundarthefwhite matter tract to be reconstructed
and to run towards the centre of the tract. Thrslwaexplained by the fact that due to partial
volume averaging the diffusion anisotropy is deseehand the main diffusion direction is
disturbed at the tract borders. In contrast, afigding variational noise the reconstructed
paths are slightly disturbed such that the prolighif reaching the tract border increases.
After accumulating multiple repetitions with indeykently generated noise, the overall set of
reconstructed paths yield a better representafidheotrue tract size than without variational
noise, even though the seed and target regionelhasvthe FT parameters are kept constant.
As a further effect of accumulating multiple FT eéipons with variational noise, the detec-
tion probability of a given fibre branching increas since more diffusion paths on slightly
variable data are reconstructed. Also, we expeat tiis approach has a higher chance to
reconstruct thin and highly curved white mattectsa

It is instructive to compare the FT results for ttypes of artificially impaired image quality,
first the decrease of image resolution (Figs. 3 4mdiddle row) and second the decrease of

SNR (Figs. 3 and 4 bottom row). Decreasing the enagolution yields smoother FT results



as can be easily explained due to omitting the@dagh-frequency content of the image data.
The increased path smoothness seems as a berigfit siight, but also means that in areas of
high tract curvature the tracking accuracy is imgxi For instance, the structure of the corti-
cal tips of the reconstructed pyramidal tract al@rbd with decreasing image resolution
(Fig. 3 middle row). As secondary effects, soménpdtecome much longer while other paths
a missed (Fig. 4 middle row). Conversely, decre&B&® yields more wiggly tracked fibre
bundles. Still, the boundary of major tracts is enor less constant when compared to the
results on the original data set (Fig. 4 bottom )rads secondary effects, some paths are
terminated earlier and some false minor branchesemonstructed (Figs. 3 and 4 bottom row).
Other than discussed in literature, we find thatttreconstruction is only mildly impaired by
increased image noise up to a certain level. Waiteulations suggest that the path deviation
approximately increases linearly with the distatocthe seed point (1, 12, 16) we find that the
reconstructed tracts do not exceed a given bountéeyargue that this is due to the fact that
the anisotropic diffusion pattern contained in itthage data does not allow for arbitrary path
deviations even though considerable noise was adokb@rwise stated, under average imag-
ing conditions we do not see the danger that tkensructed tract size is overestimated.
Rather, as discussed above, most current approachékely to underestimate the tract size.
We did not assess the effects of dedicated nommeval schemes such as proposed by Chen
and Hsu (3) and McGraw et al. (17). In an optinede; however, one could hope that white
matter tracts are reconstructed more completelytiout removing details of the individual
paths as an effect of smoothing.

Moreover, it is surprising how well the pyramidahdts in the glioma patient were recon-
structed even though downsampling the image dagan tisotropic resolution of as coarse as
6.0x6.0x6.0 mm?3 before FT. We see this as effettt bbusing a higher-order filter for inter-
polation of the data before FT and of the properbé the employed extended deflection-

based FT algorithm.



We conclude that the presented approach might affggrspective to overcome the problem
of size underestimation observed by current FT @ggres. Moreover, the effects of image
quality on the tracking result will depend on tmepsoyed FT algorithm and must be handled
with care. An advantage of the variational noispragch is that it is applicable to any ac-
quired set of diffusion tensor images other thanlbotstrap approach that requires individu-
ally stored repeated acquisitions. Even thoughcthraputation efforts are greatly reduced
compared to bootstrapping, future work is requirecrder to further reduce the required
computation time to the order of a few seconds.

Kinoshita et al. state that “further validation fddre tracking images and the improvement
and optimisation of the fibre tracking technique ezquired” (11). Based on our preliminary
findings, we propose to deepen the systematic atialuof FT applied to major white matter
tracts under controlled but realistic imaging cdiodis in dependency of image resolution,
SNR, and pathology. Therein, also newer FT algor#ishould be taken into account (e.g. 5,
7, 29). The evaluation on in-vivo images shouldcbmplemented by a variety of phantom
studies, both physical phantoms that are suitabla hasis for DTl scanning and software
phantoms (14, 23), which should be designed to mtygecal white matter tract configura-
tions under specific imaging conditions with an @kaknown ground truth on the modelled

anatomy and tissue anisotropy.
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Figures

Figure 1. MRI data of glioma patient; top left: axial T2 wyhied image, top right: coronal T1
weighted image; bottom left: original DTI data ¢tirof six gradient directions, b=1000);
bottom center. same as before but additive com@axssian noises(= 20, compare to

Figs. 3 and 4 bottom right); bottom right: samebattom left but downsampled to an iso-

tropic resolution of 6x6x6 mm3 (compare to Figan8 4 middle row, right image).
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Figure 2: Schematic drawing of adding complex Gaussian noisgidth o to a pixel value
Iyl of the magnitude image with correspondingiplex numbeC, , . The new magnitude

value is denoted ajC’z y|
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downsampling (4x4x4 mm3) and downsampling (6x6%63) and
variational noised = 5) variational noises(= 5)

additional basic noiser(= 10) and additional basic noise< 20) and
variational noised = 5) variational noises(= 5)

Figure 3: Visualization of FT uncertainty for different mations and levels of noise for the
pyramidal tract. Before tracing, all data sets waspersampled to 1.5x1.5x1.5 mm3 using a
three-lobed Lanczos filter.
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Figure 4: Visualization of FT uncertainty for different mations and levels of noise for a
seed region within the corpus callosum. Beforeitiggcall data sets were supersampled to

1.5%1.5%1.5 mm?3 using a three-lobed Lanczos filter.



