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Summary 

Background: Diffusion tensor imaging and related fibre tracking techniques have the potential 

to identify major white matter tracts afflicted by an individual pathology or tracts at risk for a 

given surgical approach. However, the reliability of these techniques is known to be limited 

by image distortions, image noise, low spatial resolution, and the problem of identifying 

crossing fibres. This paper intends to bridge the gap between the requirements of neurosurgi-

cal applications and basic research on fibre tracking uncertainty. / Method: We acquired echo 

planar diffusion tensor data from both 1.5T and 3.0T scanners. For fibre tracking, an extended 

deflection-based algorithm is employed with enhanced robustness to impaired fibre integrity 

such as caused by diffuse or infiltrating pathological processes. Moreover, we present a 

method to assess and visualize the uncertainty of fibre reconstructions based on variational 

complex Gaussian noise, which provides an alternative to the bootstrap method. We compare 

fibre tracking results with and without variational noise as well as with artificially decreased 

image resolution and signal-to-noise. / Findings: Using our fibre tracking technique, we found 

a high robustness to decreased image resolution and signal-to-noise. Still, the effects of image 

quality on the tracking result will depend on the employed fibre tracking algorithm and must 

be handled with care, especially when being used for neurosurgical planning or resection 

guidance. An advantage of the variational noise approach over the bootstrap technique is that 

it is applicable to any given set of diffusion tensor images. / Conclusions: We conclude that 



the presented approach allows for investigating the uncertainty of diffusion tensor imaging 

based fibre tracking and might offer a perspective to overcome the problem of size underesti-

mation observed by existing techniques. 
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1. Introduction 

Magnetic resonance imaging (MRI) plays a major role in neurosurgical planning and decision 

support by depicting lesions within their anatomical context, information that can be used in a 

neuronavigation system. Moreover, intraoperative MRI allows for objectively determining the 

extent of resection during surgery (25). Over the last five years, diffusion tensor imaging 

(DTI) received increasing attention in the neurosurgical community with the motivation to 

identify major white matter tracts afflicted by an individual pathology or tracts at risk for a 

given surgical approach (11, 24, 30). Colour-encoded maps of fractional anisotropy (FA) 

computed from intraoperative DTI were also successfully employed to depict the shifting of 

major white matter tracts during surgery (19).  

An explicit geometrical reconstruction of major white matter tracts has become available by 

fibre tracking (FT) based on DTI data (18). The feasibility on intraoperative DTI data has 

been shown by Nimsky et al. (20). Rather than requiring manual segmentation on every image 

slice, FT uses the directional information of the DTI data to three-dimensionally (3D) trace 

major diffusion paths starting from seed points or a seed region (2, 18). The reliability of 

current DTI-based FT, however, is known to be limited by image distortions, image noise, 

low spatial resolution, and the problem of identifying crossing fibres (11, 16). Therefore, 



additional functional and electrophysiological image guidance is mandatory in many cases 

(11). 

The problem of image distortions is most often related to the use of Echo Planar Imaging 

(EPI) for DTI, which offers fast imaging with acceptable signal-to-noise ratio (SNR). While 

the possibility of distortion compensation by post-processing the images, such as intra-subject 

spatial alignment to a high-resolution anatomical image, is limited by the loss of image infor-

mation caused by strong distortions, novel acquisition techniques promise to deliver mostly 

undistorted images at the cost of longer acquisition times (21). 

The dependency of DTI-FT on image noise has been studied by various researchers based on 

theoretical consideration and numerical simulations (1, 12, 16, 27). The main finding reported 

in literature is the mean tract deviation to increase approximately linearly with the distance 

from the seed point and to decrease with increasing SNR and diffusion anisotropy within the 

fibre bundle (1, 12). Still, Yamada et al. (30) reported that on a standard 1.5 T whole-body 

scanner with parallel imaging a scan time of less than five minutes already suffices for clini-

cally useful FT.  

The dependency of the FT result on the image resolution has not been widely described so far. 

In most publications, a close to isotropic image resolution of approximately 1.8-2.0 mm is 

used to acquire the DTI data. Tournier et al. found within simulated experiments that partial 

volume effects have a detrimental effect for tracking narrow fibres surrounded by anisotropic 

background (27). Still, the question remains if and how image resolution and the correspond-

ing partial volume effects might also afflict the tracking of larger fibre bundles. A specific 

effect of currently employed FT techniques is that the actual size of fibre bundles is underes-

timated while the direction of fibres often can be well assessed. This has been reported to be 

problematic when related to neurosurgical applications (11). It has to be questioned whether 

this underestimation is due to the limited resolution of DTI images or due to inadequacies in 

existing image analysis methods. 



Recently, a so-called bootstrap approach (4) has been used to visualise statistical properties of 

a given FT method and a given image quality (9). Therein, a non-isotropic distribution of FT 

uncertainty has been found, such as expressed by the local orientation uncertainty, in accor-

dance to the regions of low anisotropy or branching fibre tracts (8, 10). 

The goal of this paper is to bridge the gap between basic research on FT uncertainty and 

neurosurgical applications and requirements. To this end, we propose an alternative method 

that follows the same idea as the bootstrap approach. This alternative allows in any DTI data 

set to assess the geometrical variability of fibre tract reconstructions corresponding to a given 

FT algorithm and parameterisation in dependence of image quality. Furthermore, we present 

an FT algorithm as an extension of the deflection-based approach by Weinstein et al. (28) 

with enhanced robustness to impaired fibre integrity such as caused by diffuse or infiltrating 

pathological processes. We apply these methods to reconstruct the pyramidal tracts in a 

glioma patient and parts of the posterior corpus callosum in a healthy volunteer. The data 

stem from a 1.5T and a 3.0T magnet, respectively. Finally, we examine in a realistic but 

controlled environment the effects of resolution and SNR on the FT results in order to assess 

the feasibility of FT on low-quality scans that might be routinely acquired by current clinical 

scanners in an acceptable timeframe. 

 

2. Methods and Materials 

2.1 Image Acquisition 

One patient suffering from a right hemispheric glioma (F, 73 y) and a healthy volunteer (M, 

31 y) are considered. For the tumour patient, echo-planar DTI data is acquired on a 1.5 T 

Siemens Sonata (image resolution 1.875×1.875×1.9 mm³, 60 slices, 6 gradient directions, 

single channel standard head coil, scanning time ~6 min., cf. Fig. 1). For the healthy volunteer, 

DTI data is acquired on a 3T Siemens Allegra (image resolution 1.846×1.846×1.6 mm³, 80 

slices, and 30 gradient directions each, single-channel head coil, averaged over 5 repetitions, 



scanning time ~13 min.). The image noise of these images can easily be determined as de-

scribed by Sijbers et al. (26) and serves as basis for a comparison to the images including 

artificially added complex Gaussian noise, cf. Sec. 2.4.1. 

<INSERT FIGURE 1 HERE> 

 

2.2 Image Filtering 

In many cases, DTI data is acquired using an anisotropic image resolution, i.e. the slice thick-

ness, commonly without inter-slice gap, is larger than the in-plane pixel spacing. Thus, the 

highest encoded spatial frequency is larger along the x and y axis (constituting the image 

plane) than along the z axis (the patient’s y axis, running perpendicularly to the imaging 

plane). In such case, if no spatial normalization is applied to the image data, FT results would 

depend on the fibre orientation with respect to the imaging plane. For example, a highly 

curved tract would be reconstructed more accurately within in the x-y plane than within the x-

z or y-z planes.  

Before FT, we consequently propose to discard the highest frequency content in x and y direc-

tion in order to obtain the isotropic image content from the primary image data with an iso-

tropic voxel size equal to the original slice thickness (e.g. 0.8×0.8×2.5 mm³ is mapped to 

2.5×2.5×2.5 mm³). To this end, the resolution reduction in x and y direction would ideally be 

performed by k-space cropping in order to maintain MR image characteristics. A good ap-

proximation to this k-space operation is resampling with a Sinc or Lanczos filter in the spatial 

domain. In this study, we use a three-lobed Lanczos filter separately along all three principal 

coordinate axes.  

The isotropic MR data is then interpolated in order to provide DTI information at any spatial 

position. We propose to perform a supersampling of the data before FT to an isotropic target 

voxel size of approximately 1.0-1.5 mm using a higher-order filter in order to enhance the 

quality of FT results. This supersampling does not add information to the image, but allows 



for using a simple tri-linear interpolation at the later tracking stage. In correspondence to the 

primary resampling step, supersampling would ideally be performed by zero-filling in k-space. 

Again, we propose to use a Lanczos-3 filter in the spatial domain that represents a good trade-

off between computational speed and filtering accuracy. 

In addition to spatial resampling, denoising of the original MRI data might be beneficial in 

case of high image noise, but also induces assumptions, which cannot be warranted in general, 

on the underlying signal (17). Instead of denoising, it is also common to simply smooth the 

data using a Gaussian filter, while the filter width is chosen empirically according to the 

respective SNR; larger filters for low SNR, and vice versa. We did not consider Gaussian 

smoothing within this study. 

 

2.3 Extended Fibre Tracking Method 

The FT algorithm we employed is based on the deflection-based approach by Weinstein et al. 

(28) and makes use of the full diffusion tensor information during tracking. In contrast, 

streamline-based algorithms that are commonly employed, such as the FACT (Fibre Assign-

ment by Continuous Tracking) method (18), take into consideration only the largest eigenvec-

tor representing the main diffusion direction. In comparison to the method described by 

Weinstein et al. (28), we added a novel moving average estimation of the fibre curvature and 

anisotropy to the tracking algorithm, which leads to more accurate tracking dynamics and 

more robust termination criteria (23).  

In most cases, FT is applied to discrete images, but the tracking algorithm leads to sub-voxel 

positions r t. Therefore, we calculate the new direction for the diffusion tensor at each corner 

of the cube including r t-1 and use tri-linear interpolation for the calculation of the new direc-

tion at position r t. 

Usually, the diffusion anisotropy (DA) and the curvature at the current tracking position 

determine whether the tracking terminates. Tracking is stopped as soon as the DA falls below 



or the curvature exceeds some threshold value. These local termination criteria are highly 

sensitive to noise, because the FT could be trapped in a local minimum or maximum of the 

DA or the curvature, respectively. Furthermore, whether the FT is trapped or not at some local 

extremum depends unpredictably on the step size. Tournier et al. who showed that the accu-

racy of FT sensitively depends on the step size (27).In order to avoid this problem, we calcu-

late moving averages of both the DA and the curvature with respect to a window on the 

tracked fibre.  

Since on the one hand fibre bundles with high curvature are reconstructed with streamline 

more accurate than with deflection-based tracking and on the other hand deflection-based 

tracking is more robust to orientation uncertainty (OU), we set the main vector weighting 

equal to the curvature normalized by the maximal expected curvature. 

Furthermore, we scale the weighting factors for the trilinear interpolation of the new direc-

tions at each corner of the cube including r t-1with (π/2 - θ), where θ is the angle of uncertainty. 

This curvature and OU weighting was found to significantly improve fibre reconstruction 

especially at the border of simulated fibre bundles or given white matter tracts, respectively 

(23). 

All image analysis methods used in this paper have been built upon the research and devel-

opment platform MeVisLab (31). 

 

2.4 Assessment of Fibre Tracking Uncertainty  

Although an assessment of the FT with respect to its uncertainty is essential in clinical appli-

cations, only little work has been done in this area. In a recent paper by Jones et al. , the boot-

strap method (4, 22) was used for visualizing the uncertainty of fibre orientation in conjunc-

tion with the trajectory data (10). However, their method needs several repetitions of each 

image that are not available in the standard setting. 



To overcome this problem, we present a new method that allows for an efficient computation 

of diffusion weighted images with user-defined noise while retaining the MRI noise charac-

teristics. The resulting images are used to analyse the tracking uncertainty resulting from 

image noise. The main idea is to add complex Gaussian noise to the magnitude images. In 

contrast to the bootstrap method, our technique needs only a single data set so that the amount 

of required original data and the time for computing the artificial data can be reduced dra-

matically. 

 

2.4.1 Complex Gaussian Noise  

The noise distribution of acquired MR images, even after 2D inverse Fourier transformation is 

commonly assumed to be Gaussian (26). However, after magnitude calculation the data is no 

more complex and the noise is Rician distributed (6). We now propose to add complex Gaus-

sian noise to the magnitude images, so that the noise distribution is equivalent to those of 

standard MR images.  

Given a pixel value      of the magnitude image, we define a corresponding complex num-

ber                because we can choose an arbitrary point on the circle of the magni-

tude, the magnitude determination of the complex MR signal   being rotation-invariant. For 

the moment, let us assume we would like to add noise with a complex Gaussian distribution 

of width  to    . The resulting complex number is                 , where 

      denotes a normal distributed complex number with mean 0 and covariance matrix 

  . Thereafter, the corresponding new magnitude value can be determined as 

     (cf. Fig. 2). Now, let us assume that the MR signal   is corrupted by Gaussian noise 

with variance   . Further, let    denote the desired variance of the resulting image. It is 

well known that, if          and            are independent variates, 

then                . As a consequence,   can simply be determined as 

          , so that the standard deviation of the noise to be added is        . The 



complexity of our new approach is only in O(s), with s being the number of voxels, because 

all new images can be derived from the single set of existing images. 

<INSERT FIGURE 2 HERE> 

 

2.4.2 Visualizing the Uncertainty 

Let       denote the desired noise of the images from which we would like to visualise the 

uncertainty. Then, the difference noise  can be added to the original images as described 

above.  

For the resulting new data set, FT is performed for a (small) set consisting of n seed points 

and the streamlines are stored and accumulated within a set of streamlines S. This process is 

repeated m times for the same seed points resulting in a set S consisting of n⋅m streamlines.  

Now, the uncertainty can be regarded as the difference between the so-called superset trajec-

tories – the streamlines that results when we add no noise to the original images (cf. Figs. 3 

and 4 top left) – and the set S, while the probability density of the FT uncertainty is reflected 

in the geometrical path distribution within S. 

 

3. Results 

In this section we describe the experimental setup and give a short summary of corresponding 

fibre tracking results. An extensive discussion of the results is given in the next section. 

For the glioma patient we defined two seed regions, each consisting of n = 100 seed points at 

the level of the cerebral peduncle as well as two destination regions in the precentral gyrus for 

tracking the fibres of the pyramidal tract. For the healthy volunteer we defined a single small 

seed region with n = 20 mid-sagittally within the posterior part of the corpus callosum. For 

the pyramidal tract, m = 5 was chosen, where m denotes the number of how often the FT 

algorithm is started each with independently generated variational noise and for each seed 

point (cf. Sec. 2.4.2). For the corpus callosum, m was set to 10. 



 

3.1 Original FT Results vs. Variational Noise 

Figure 3 and Figure 4 (upper row) compare the original (superset) FT result with that 

achieved by adding complex Gaussian noise (σ = 5 or 10, respectively) to the images. As one 

can see, this so-called variational noise causes a widening and an aggregation of the fibres. 

 

3.2 Resolution Effects 

We examined the FT result depending on the resolution of the DW images. Before supersam-

pling the images to an isotropic resolution, we downsample them to 4×4×4 mm3 or to 

6×6×6 mm3, respectively, also using a three-lobed Lanczos filter. The results can be found in 

Figure 3 and 4 (middle row), which show that the reconstructed paths are smoothed with 

decreasing resolution. Moreover, new branchings appear within the reconstruction and others 

are missed (cf. Fig. 4 middle row). 

 

3.3 SNR Effects 

We also examined the effect of adding noise to the images. Before supersampling, we added 

noise of σ = 10 and σ = 20 to the images. The corresponding FT results can be found in Figure 

3 and 4 (bottom row). Note that the noise leads to a thinning of the reconstructed fibre bun-

dles and only some new false paths are reconstructed. It is remarkable that all important paths 

are still reconstructed despite of the bad image quality (cf. Fig. 1 bottom center). 

<INSERT FIGURES 3 AND 4 HERE> 

 

4. Discussion 

Our results must be discussed with respect to the anatomical accuracy of diffusion tensor 

based fibre tracking. Current DTI protocols used for FT yield an effective image resolution of 

approximately two millimetres, while the acquired SNR represents a trade-off between scan-



ning time and image quality. Due to the limited resolution, only larger white matter tracts can 

be reconstructed in principle. The anatomical accuracy of a given FT algorithm is related to 

its sensitivity, i.e. its ability to delineate white matter tracts of a given size and diffusion 

anisotropy, to its behaviour at branching or crossing fibre bundles, and to its ability to accu-

rately represent the size or width of a given fibre tract. From a neurosurgical perspective, the 

sensitivity and the size representation are critical as soon as the FT results are used in combi-

nation with neuronavigation as a basis for resection guidance (11). 

For most figures presented in this paper, we used variational noise with repeated FT under 

identical starting and boundary conditions in order to demonstrate the uncertainty of FT. 

When comparing the results with and without variational noise, a systematic widening of the 

reconstructed fibre tracts can be observed with variational noise. This can be interpreted such 

that conventional FT tends to avoid the boundary of the white matter tract to be reconstructed 

and to run towards the centre of the tract. This can be explained by the fact that due to partial 

volume averaging the diffusion anisotropy is decreased and the main diffusion direction is 

disturbed at the tract borders. In contrast, after adding variational noise the reconstructed 

paths are slightly disturbed such that the probability of reaching the tract border increases. 

After accumulating multiple repetitions with independently generated noise, the overall set of 

reconstructed paths yield a better representation of the true tract size than without variational 

noise, even though the seed and target regions as well as the FT parameters are kept constant. 

As a further effect of accumulating multiple FT repetitions with variational noise, the detec-

tion probability of a given fibre branching increases, since more diffusion paths on slightly 

variable data are reconstructed. Also, we expect that this approach has a higher chance to 

reconstruct thin and highly curved white matter tracts. 

It is instructive to compare the FT results for two types of artificially impaired image quality, 

first the decrease of image resolution (Figs. 3 and 4 middle row) and second the decrease of 

SNR (Figs. 3 and 4 bottom row). Decreasing the image resolution yields smoother FT results 



as can be easily explained due to omitting the spatial high-frequency content of the image data. 

The increased path smoothness seems as a benefit at first sight, but also means that in areas of 

high tract curvature the tracking accuracy is impaired. For instance, the structure of the corti-

cal tips of the reconstructed pyramidal tract are blurred with decreasing image resolution 

(Fig. 3 middle row). As secondary effects, some paths become much longer while other paths 

a missed (Fig. 4 middle row). Conversely, decreased SNR yields more wiggly tracked fibre 

bundles. Still, the boundary of major tracts is more or less constant when compared to the 

results on the original data set (Fig. 4 bottom row). As secondary effects, some paths are 

terminated earlier and some false minor branches are reconstructed (Figs. 3 and 4 bottom row). 

Other than discussed in literature, we find that tract reconstruction is only mildly impaired by 

increased image noise up to a certain level. While simulations suggest that the path deviation 

approximately increases linearly with the distance to the seed point (1, 12, 16) we find that the 

reconstructed tracts do not exceed a given boundary. We argue that this is due to the fact that 

the anisotropic diffusion pattern contained in the image data does not allow for arbitrary path 

deviations even though considerable noise was added. Otherwise stated, under average imag-

ing conditions we do not see the danger that the reconstructed tract size is overestimated. 

Rather, as discussed above, most current approaches are likely to underestimate the tract size. 

We did not assess the effects of dedicated noise removal schemes such as proposed by Chen 

and Hsu (3) and McGraw et al. (17). In an optimal case, however, one could hope that white 

matter tracts are reconstructed more completely but without removing details of the individual 

paths as an effect of smoothing. 

Moreover, it is surprising how well the pyramidal tracts in the glioma patient were recon-

structed even though downsampling the image data to an isotropic resolution of as coarse as 

6.0×6.0×6.0 mm³ before FT. We see this as effect both of using a higher-order filter for inter-

polation of the data before FT and of the properties of the employed extended deflection-

based FT algorithm. 



We conclude that the presented approach might offer a perspective to overcome the problem 

of size underestimation observed by current FT approaches. Moreover, the effects of image 

quality on the tracking result will depend on the employed FT algorithm and must be handled 

with care. An advantage of the variational noise approach is that it is applicable to any ac-

quired set of diffusion tensor images other than the bootstrap approach that requires individu-

ally stored repeated acquisitions. Even though the computation efforts are greatly reduced 

compared to bootstrapping, future work is required in order to further reduce the required 

computation time to the order of a few seconds. 

Kinoshita et al. state that “further validation of fibre tracking images and the improvement 

and optimisation of the fibre tracking technique are required” (11). Based on our preliminary 

findings, we propose to deepen the systematic evaluation of FT applied to major white matter 

tracts under controlled but realistic imaging conditions in dependency of image resolution, 

SNR, and pathology. Therein, also newer FT algorithms should be taken into account (e.g. 5, 

7, 29). The evaluation on in-vivo images should be complemented by a variety of phantom 

studies, both physical phantoms that are suitable as a basis for DTI scanning and software 

phantoms (14, 23), which should be designed to model typical white matter tract configura-

tions under specific imaging conditions with an exactly known ground truth on the modelled 

anatomy and tissue anisotropy. 
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Figure 1: MRI data of glioma patient; top left: axial T2 weighted image, top right: coronal T1 

weighted image; bottom left: original DTI data (first of six gradient directions, b=1000); 

bottom center: same as before but additive complex Gaussian noise (σ = 20, compare to 

Figs. 3 and 4 bottom right); bottom right: same as bottom left but downsampled to an iso-

tropic resolution of 6×6×6 mm³ (compare to Figs. 3 and 4 middle row, right image). 



 

 

 
 
Figure 2: Schematic drawing of adding complex Gaussian noise of width σ to a pixel value    

         of the magnitude image with corresponding complex number        . The new magnitude 

value is denoted as             . 
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Figure 3: Visualization of FT uncertainty for different resolutions and levels of noise for the 
pyramidal tract. Before tracing, all data sets were supersampled to 1.5×1.5×1.5 mm³ using a 
three-lobed Lanczos filter. 
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Figure 4: Visualization of FT uncertainty for different resolutions and levels of noise for a 

seed region within the corpus callosum. Before tracing, all data sets were supersampled to 

1.5×1.5×1.5 mm³ using a three-lobed Lanczos filter. 


