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ABSTRACT

We present a novel algorithm to compute intersections of two point clouds. It can be used to detect collisions between implicit
surfaces defined by two point sets, or to construct their intersection curves. Our approach utilizes a proximity graph that allows
for quick interpolation search of a common zero of the two implicit functions.

First, pairs of points from one point set are constructed, bracketing the intersection with the other surface. Second, an inter-
polation search along shortest paths in the graph is performed. Third, the solutions are refined. For the first and third step,
randomized sampling is utilized.

We show that the number of evaluations of the implicit function and the overall runtiméOdaglogN) in the average case,

whereN is the point cloud size. The storage is boundedyi).

Our measurements show that we achieve a speedup by an order of magnitude compared to a recently proposed randomized
sampling technique for point cloud collision detection.

Keywords: Collision detection, weighted least squares, proximity graphs, implicit surfaces.

1 INTRODUCTION

In the past few years, point clouds have had a renais-
sance caused by the wide-spread availability of 3D
scanning technology. Interaction with objects thus rep-
resented often requires intersection tests between pairs
of objects. Other applications, such as Boolean oper-
ations [1] or physically-based simulation [10], require,

fast construction of points on the intersection curves Figure 1: One of our point clouds for benchmarking our
P " .novel intersection method (> 137 000points).

In order to do that, one must define an appropri-

ate surface (even if it is not explicitly reconstructed)?ne object and on different sides of the other object.

The simple weighted least-squares (WLS) definition o hen, our interpolation search converges quickly to an

point cloud surfaces is quite attractive and can be eval- . ; . ) .
approximate intersection point. Finally, the space sur-

uated very fast [3]. In order to overcome a problem : . )
. . . o rounding that is sampled to get very accurate (discrete)

caused by Euclidean distances in the weighting func- . .
intersection points.

tions, [12] proposed a method that utilizes (concep- . . S
- . . " Our new algorithm can be combined very easily with
tually) a Voronoi diagram and a geometric proximity ; . .
ny acceleration data structure for collision detection or

graph to_approxmate geode_sm distances between tﬁﬁersection construction. For instance, with bounding
query point and the cloud points.

In this paper, we present a method that can quickIVO|ume hierarchies [11], the algorithm presented here

find intersection points on obiects represented b ir%ould be invoked at the leaves.
Ersection points on ObJECts represented by po In the following, we will first give a review of related

clouds. It converges even if the sampling is SParSGy Ak, Section 3 gives a quick recap of the WLS surface

compared to the surface areas, and even if the distangge. i o0 the proximity graph we are using. Sec-

be;vr\]/e(.a; th? iurf?.(lj.es contalps .Ito cal m|hn|ma. th . ttion 4 describes the details of our new algorithm while
e idea is to utilize a proximity graph over the pointg, i 5 shows its performance.

clouds and perform interpolation search along geodesic

paths through these graphs. The search is initialize RELATED WORK
by randomized sampling that tries to find two points o

i

n . . . . )
An attractive way of handling point clouds is to define

Permission to make digital or hard copies of all or part of thisthe surface as the zero set ofiaplicit functionthat is

work for personal or classroom use is granted without fee provide . . .
that copies are not made or distributed for profit or comme cia?sons’[ruc'{ed from the point cloud. Usually, this function

advantage and that copies bear this notice and the full citation gn tH& not given analytically but “algorithmically” [2, 3, 4].
first page. To copy otherwise, or republish, to post on servers or tThis is a general method that can be used for recon-
redistribute to lists, requires prior specific permission and/or a fee. . . . . .
struction as well as ray-tracing or collision detection.
WSCG 2005 conference procebedings, ISBN 80-903100-7-9 Another very popular method is to define the surface as
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Geometric queries on point clouds have been studiedThe normal n(x) is defined as the direction of
extensively. An interesting result related to our problensmallest weighted covariance, which is the small-
can be found in [7, p.908f]. They use a divide-andest eigenvector of the centered covariance matrix
conquer algorithm to find the closest pair mpoints  B(x) = {bjj (x)} with
in time O(nlogn) which is, of course, not applicable to

realtime collision detection. N
However, there is very little literature on geometric i (X) = > 8(x, pu)(&1(pk —a(x))) (€ (P —a(x)))
queries on the implicit surfaces defined by such object k=1 @)

representations. The work most related to ours is [lervherea,i € {0,1,2} is a basis oR3.
They sample an implicit function with a stochastic dif-

ferential equation to detect intersections. Since it is A
method for general implicit surfaces, they do not ex
ploit the proximity graph available here. In addition

our new method is much simpler. ing a different distance functiotge, (X, p) in (3) that

| Incgll]”g _bou(?dtlngt.volume (BV) hle(;ar_(r:::y If3c>\r/ ?O'nt is based on geodesic distances on the suigaddere-
cloud collision detection was proposed. The r"’.‘verfore, a geometric proximity graph can be utilized where
sal first visits leaves where intersections are more likel

Then, a sampling technique similar to [21] determine he nodes are points 2. Then, geodesic distances be-
L . . Tween the points can be approximated by shortest paths
the intersection points. on the edges of the graph.
An algorithm to perform Boolean operations on We use the followinggeodesic kernel
solids was presented in [1]. However, their algorithm
does not work for surfaces implicitly defined, and it oo (x. )22
requires closed surfaces. B(x,p) = e "™ ®)
As mentioned above, our method is based on prox- ]
imity graphs, which have been studied extensively ifvhen computingf by (1)—(4).
the past decade. There is a broad spectrum of them,
including the Delaunay graph, nearest-neighbor grap@.2 Geodesic Distance Approximation
y-graph, a-shape, and the spheres-of-influence grap
to name but a few; see [9] for a good survey.

The above definition can produce artifacts in the sur-
ceS, which are mainly caused by the Euclidean dis-
tance functiond(x, p) that does not take the topology

'of Sinto account. This problem can be solved by us-

h
There is a whole spectrum of different proximity graphs
over a setZ of points. We decided to use the the

3 IMPLICIT SURFACE MODEL sphere-of-influence graph (SIG) as it has reduced ar-

In this section, we give a quick recap of the weighteé'fads in WLS point cloud surfaces dramatically [12].

. - —1n this section, we will give a short overview of this
least-squares (WLS) method [2, 3], which was origi- 9

. : . fairly little known proximity graph [6, 14]. Moreover,
nally mtroduc_ed by Mcl__aln [13] n the context of ON" \ve will shortly summarize how to precompute and store
touring, plus its geodesic extension based on proximi

graphs [12]. %e geodesic distances.

. The Sphere-of-Influence Graph (SIG). The ideais to
3.1 Weighted Least Squares connect points if their “spheres of influence” intersect.
Let a point cloudZ? with N points p; € R® be given. More precisely, for each poirg; the distance to its
Then, an appealing definition of the surface frethis  nearest neighbor (NN) is determined and two pojits
the zero seS= {x| f(x) = 0} of an implicit function ~ andpj are connected by an edge|ifi — p; | < di +d;.
As a consequence, the SIG tends to connect points
f(x) =n(x) - (a(x) —x) (1)  that are “close” to each other relative to the local point
density. In noisy or irregularly sampled point clouds,
however, a lot of isolated “mini-clusters” can appeatr,
even though there are no holes in the original surface.

wherea(x) is the weighted average of all pointg

N N
a(x) = w (2) Because our root bracketing will utilize the graph, it
2= 0(x.pi) would fail in such a situation.
Usually, a Gaussian kernel (weight function) Therefore, we use theSIG(%”): instead of comput-

ing the distance to the NN for each node, we compute
B(x,p) = e 9PP/"  q(x p)=|x—p|, (3) thedistance tothenearest neighbor and then proceed
as in the case aof = 1. That means, the larger the
is used, but other kernels work as well. more nodes are directly connected by an edge. In our
The bandwidthh of the kernel allows us to tune the experience, it seems best to choose3 orr = 4, and
decay of the influence of the points. It should be chosetlien prune away all “long” edges by an outlier detection
such that no holes appear. algorithm [22].
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Figure 2: Outline of our point cloud collision detection.

Precomputing Geodesic DistancesComputing short- Fugu_re 3: Two point clouds A and B a_nd their inter-
section spheres |1 and I2. Our root finding procedure,

est paths on-the-fly during the collision detection pro- o _ L .
cess would be, of course, prohibitively expensive, so eryhen initialized with ps1, p2 € A, will find an approximate
pre-compute z;md Store £hem incose-pairs shor,test- intersection point inside the intersection sphere |1.
paths(CPSP) map [12].

Since the Gaussian (3) decays fairly quickly, we need
to store only paths up to some length for defining th
surface. The contribution of nodes in Equations 2 and
that are farther away can be neglected. That means, A :
each pointp; we have to run a single-source-shortes etA” C A such that each surfg) gets occupied by at

" /. “ H il
path algorithm, but only for points whose influence ineaSt onep; < A here, “occupied byp” means that
bl is larger than some small threshold. the projection of(p;) along the normah(p;) onto the

In [12] it is shown that all these geodesic distancegulgg:)gg;?ppl\?vgecﬁl If:gﬁ"”gg;ﬁiiiin:r:jt:]aedr'US'. t
for a whole point cloud of siz&l can be computed and ! y pom

. . (if any) in the neighborhoodbf p; so thatp; andp; lie
stored inO(N) time and space. on different sides ofg. We represent the neighborhood

Assume that the implicit surface is conceptually(!)

pproximated by surfels (2D discs) of equal size [16,

9]. Let Box(A,B) = Box(A) NBox(B) andA = An
X(A,B). Then, we want to randomly draw a sub-

of a pointp; by a spher&; centered ap;.
4 POINTS ON THE INTERSECTION An advantage of this is that the application can spec-

Given two point cloudsA andB, the goal is to deter- ify the density of the intersection points that are to be
mine whether or not there is an intersection, i.e., a conreturned by our algorithm. From these, it is fairly easy
mon rootfa(x) = fg(x) = 0, and, possibly, to compute to construct a discretization of the complete intersection
a sampling of the intersection curve(s), i.e., of the saturves (e.g., by utilizing randomized sampling again).
Z = {x| fa(x) = fg(x) = 0}. Both can be achieved Note that we never need to actually construct the
very quickly by exploiting the proximity graph. surfels, or assign the points frod explicitly to the
First, our algorithm tries to bracket intersections byneighborhoods, which we describe in the following.
two points on one surface and on either side of the oth&ection 4.2 describes how to choose the radius of the
surface (see Figure 2). Second, for each such brackephere<;.
it finds an approximate point in one of the point clouds In order to find ap; € ANG; on the “other side” of
that is close to the intersection (see Figure 3). Finallyfs, we usefg(pi) - fg(p;) < 0 as an indicator. This, of
this approximate intersection point is refined by subsesourse, is reliable only if the normaiéx) are consistent
guent randomized sampling. This last step is optionathroughout space. If the surface is manifold, this can be
depending on the accuracy needed by the applicationachieved by a method similar to [8].

In the following, we describe each step in detail. Utilizing our proximity graph (which is a supergraph
_ of the nearest-neighbor graph), we can propagate a nor-
4.1 Root Bracketing mal to each poin € A. Then, when definind (x),

Finding common roots of two (or more) nonlinear func-V€ choose the direction 0()1() according to the normal
stored with the NN ok in A.

tions is extremely difficult [17]. Even more so here, be-
cause the functions are not described analytically, byt I 0rder to samplé such that each (conceptual) sur-

algorithmically. felis rr]epre”sen_ted by at least one point in the sample, we
As mentioned before, our algorithm starts by conYset & following
structing random pairs of points on different sides of oryma 1

one of the surfaces. The two points should not be 10pes A pe a uniformly sampled point cloud. Further,
far apart, and, in addition, the pairs should evenly samy; Sa denote the set of conceptual surfels approxi-

ple the surface. . o mating the surface o& inside the intersection volume
An exhaustive enumeration of all pairs is, of course,

prohibitively ex_penSive- Therefqre, We propose the fOISurprisingly, the direction ofi(x) is consistent over fairly large vol-
lowing randomized (sub-)sampling procedure. umes without any preconditioning.



Assume that the implicit surface ovArcan also be
approximated by surfels of siz¢A). Then,Fa can be
estimated by

Fa=|A-1r (A)2.

Overall,r(A’) can be estimated by

)
r(A) r(A).\/Ezr(A).,/\\m.A.

The size ofA can easily be estimated depending on the
ratio of Vol (A) andVol (A, B), the sampling radius(A)
can easily be determined in the preprocessing.

Figure 4: If the spherical neighborhoods C; (red) are
too small, not all collisions can be found. (i) adjoining
neighborhoods do not overlap sufficiently, their inter-
section contains no randomly chosen cloud point. (ii)

surface is not covered by neighborhoods C;. 4.3 Completing the Brackets

of A andB, and leta = |S|. Then, in order to oc- Given a pointp; € A, we have to determine other points

cupy each surfel with at least one point with probabilitPi € A NCi on the other side ofg in order to bracket
p=e°°, wherec is an arbitrary constant, we have tothe intersections. From a theoretical point of view, this

drawn = O(alna+ c-a) random and independent pointscould be done by testinds(pi) - fs(pj) < O for all

fromA. These points are denoted/s pointsp; € A'NC; intime O(1) becauséA’| can be cho-
_ sen constant (see Section 5.1). In practice however, the
Proof: see Appendix A. setA' NG cannot be determined quickly. Therefore, in

For instance, if we wanp > 97% we have to choose the following, we propose an adequate alternative that
¢ = 3.5, and ifa= 30, thenn ~ 200random points have works in timeO(loglogN).
to be drawn. We observe thatA NG ~ A N A, where

The next section will show how to choose an approa; := {x | 2r(A) — 5 < |x — pi|| < 2r(A)} is an
priate size for the neighborhoo@. After that, Sec-  anulusaroundp; (or, at least, these are tipg that we
tion 4.3 will propose an efficient way to determine theneed to consider to ensure a certain bracket density).
other partp; of the root brackets, given a poipt € A'. By construction ofA’, A’ N A; has a similar distribution
4.2 Size of Neighborhoods as AdﬂAi. AEDbserve further, that we don'’t necessarily

) , . needp; € A'.

The radius of the spherical neighborhodishas to be Overall, the idea is to construct a random sangple
chosen so that, on the one hand,Giltover the whole ANG; such thaB; C A, |Bi| ~ |A'NA|, and such that
surface defined byA. On the other hand, the intersec-Bi has a similar distribution a&' N A;.
tion with each adjoining neighborhood@fhasto con-  this sampléB; can be constructed quickly by the help
tain at least one point i& so as to not miss any col- of Lemma 1: we just choose randon@(binb) many
lisions lying in the intersection of two neighborhoods.pointS fromAN A, whereb := |A' NG|.
The situation is illustrated in Figure 4. _ _ We can describe the s&n A very quickly, if the

To determine the minimal radius of a spherical ne'ghpoints in the CPSP map stored with are sorted by
borhoodC;, we introduce the notion afampling radius  ieir geodesi distance fromp;. Then we just need to

use interpolation search to find the first point with dis-

Let a point cloudh as well as a subsét C A be given. @nce2r(A) — & and the last point with distand (A')
Consider a set of spheres, centered athat cover the oM pi. This can be done in tim®(loglog|ANGi|)
surface defined b (not A), where all spheres have P&' pomtpi _eA. Thus, the overall time to construct all
equal radius. We define the sampling radigs/) as Prackets is iro(loglogN).

the minimal radius of such a sphere covering. 4.4 Interpolation Search

Definition 1 (Sampling radius)

Itis easy to see that spheres with radlugA’) centered  Haying determined two pointp;, p2 € A on different
at points inA’ contain always points of the neighboringsjdes of surfac®, the next goal is to find a poirft € A

spheres and, of course, cover the surface. “petween” p; and p, that is “as close as possible” to
The sampling radiug(A’) can obviously be estimated B, |n the following, we will call such a poingpprox-
as the radius of a surfels € Sa. imate intersection pointAlP). The true intersection

Let Fa denote the surface area of the implicit surface
overA. Then, the surfel radiuscan be determined by ————
2 By using the geodesic distance (or, rather, the approximation thereof)
Fa 2 Fa we basically impose a different topology on the space wheis
a =T = r=4/_—. embedded, but this is actually desirable.



l[,r=1n g.insertf); clearP

dir = fe(Pr), fa(Pn) repeat
while |d| > € and|d;| > € andl < r do p = g.pop
x=1+ [%(r -] {* P.append()
dy = fa(R) for all p; adjacenttgp do
if dy <O then if dgeo(Pi, P2) < dgeo(P1,P2) then
Ir=xr insertp; into g with priority dged(pi, P2)
else until p=p2
Lr=1,x Algorithm 2: This algorithm can be used to initialize P

Algorithm 1: Pseudo-code of our root finding algorithm  for Algorithm 1 if storing all shortest paths in the CPSP
based on interpolation search. P is an array containing ~ Map is too expensive. (q is a priority queue.)

the points of the shortest path from p1 =Py to po =By,
which can be precomputed. d; = fg(P) approximates

) ) _ 4.5 Models with Boundaries
the distance of P, to object B. (*) Note that either d, or ] )
d is negative. If the models have boundaries and the sampling rate

of our root bracketing algorithm is too low, not all in-
tersections will be found (see Figure 5). In that case,

curve fg(x) = fa(x) = 0 will pass close tdd (usually, some AIPs might not be reached, because they are not
it does not pass through any points of the point cloudsgonnected through the proximity graph.

Depending on the applicatioffy might already suf-  Therefore, we propose to modify theSIG. After
fice. If the true intersection points are needed, then weonstructing the graph, we usually prune away all
refine the output of the interpolation search by the prodong” edges by an outlier detection algorithm (see
cedure described in Section 4.6. Section 3.2). Now, we only mark these edges as

Here, we can exploit the proximity graph: we just“virtual”. Thus, we can still use the-SIG for defining
consider the pointd;, that are on the shortest paththe surface as before. For our interpolation search,
betweenp; and pz, and we look forp that assumes however, we can also use the “virtual” edges so that
minpep,{|f(P)[}. small holes in the model are bridged.

Let us assume thatz is monotonic along the path . . .
Pips. Then, instead of doing an exhaustive searc-6 Precise Intersection Points
along the path, we can utilize interpolation search t¢f two point clouds are intersecting, our interpolation
look for p with f () = 0.3 This makes sense here, be-search computes a set of AIPs. Auiersection sphere
cause the “access” to the key of an element, i.e., a#f radiusr = max(||x — pa]|, ||x — Pz||) contains a true
evaluation offg(x), is fairly expensive [20]. The av- intersection point, where the sphere is centered at
erage runtime of interpolation search i€floglogm),
m= number of elements. X — (

Algorithm 1 for our interpolation search assumes that th+dp
the shortest paths are precomputed and stored in t
CPSP map (Section 3.2). Analogously to [12], itis eas
to see that the storage is still linear.

However, in practice, the memory consumption coul
be too large for huge point clouds. In that case, w
can compute the path on-the-fly at runtime by Algo-

_rlthm 22 -Il—h eorett_|cally|_sipeak|ng,. the O\Q?rall_talq[(?””;hn#rom the surfaces is to be smaller than we cover a
IS NOw In linéar time. However, In practice, 1t stifl be- given intersection sphere tysmaller spheres witHi-

haves sublinear because the reconstruction of the paﬂ‘!a'%etergz and sample that volume ksins—+ cs many
negligible compared to evaluatirfg (see Section 5.3). oints so that each of thespheres gets a point with

If T is not mono.tonlc along the pgths between th igh probability (see Appendix A). For each of these,
brack§t§, bqt the sign OWB(X). IS consistent, thgn we we just determine the distance to both surfaces.
can utlllzg binary search to fin. The complexity in Rogers [18] showed that a sphere with raditscan
that case is, of cours€ylogm). be covered by at most= [+/3a]® smaller spheres of
radiusb. Since we would like to cover the intersec-
tion sphere by spheres with radiois- £,/2, we have to
choosea = 2r /¢y, so thata-b=r. As a consequence,

da 1+ d1f2),

ﬂ?e pi have been computed by the interpolation search,
¥ing on different sides of surfacB, andd; = fg(pi).
his ideais illustrated in Figure 6. So if the AIPs are not
(érecise enough, then we can sample each such sphere to
et more accurate (discrete) intersection points.
More precisely, if a precise collision point’s distance

3 In practice, the interpolation search will never find exactly sugh a s— (\/§2I’]3

but instead a pair of adjacent points on the path that stragidle &



——n=20
—=—n=50
——n=100
——n=150

happy budha

error / %

Figure 5: Models with boundaries can cause errors (I1

o
A PRI N
A N A
T

could remain undetected), which can be avoided by o 05

, 1 1,5 2 25
[T ” H R distal lative to bb i
virtual” edges in the proximity graph. istance (relative to bbox size)

Figure 7: If the sampling density is too small, our ap-
proach can miss some intersections, n = O(alna).

For timing the performance, we used a set of ob-

dl jects (see Fig. 8), most of them with several resolu-

tions. Benchmarking was performed by the procedure
proposed in [23], which computes average collision de-

tection times for a range of distances between two iden-
tical objects, which are scaled uniformly so that they fit

into a cube of siz&3.

Figure 6: An intersection sphere centered at X contains
a true intersection point. Its radius r can be computed
approximately by the help of the two AIPs p; and Po.
The center is determined by the intercept theorem. 5.1 Minimal Bracket Density

As mentioned before, if the number of (conceptual) sur-

For example, to cover an intersection sphere Witlg|s s too small, then the size of their neighborhoods
spheres ofadiuse, theng, = 2¢ ands= [/3r /¢]3. can become too large,and, as a consequence, the like-
4.7 Complexity Considerations !ihoqd can become too large that thg norm@!) flips

its sign withoutx actually changing sides. In that case,

In this section we analyze the runtime of our approacBur method could fail to find pairs of points on different
and the number of evaluations of the implicit functionsjdes of the surface.
that are necessary to detect all intersections for a givenTherefore, we propose to estimate the minimal num-
sampling density described by the numbef surfels.  ber of surfels (which directly influences the radius of

In general, evaluating(x) takesO(logN) time, even  the spherical neighborhoods) by the following prepro-
if the support of the kernel is bounded, because the Niessing procedure. For each distance, a large number of
of x has to be determined (using, for instancekDa  collisions tests is performed, each with a different con-
tree). Here, fortunately, one evaluation can be done itellation between the objects. A collisions test stops
only O(1) time: the root bracketing and interpolationafter the first intersection has been found. Each of these
search evaluaté(x) only at pointsx € AUB, and com-  tests is performed with a different sampling density, ex-
puting the precise intersection points can use a brujsressed by the number= O(alna) (see Section 4.1).
force NN search in constant time, starting from the AIPThen, we use the minimal sampling density for which

As already shown in Section 4.3, our root bracketingl| collisions have been found.
algorithm take€(loglogN) time in the worst case. The results for one object can be found in Figure 7,

Then, for at mosO(alna) many pairs, our interpola- which shows the error rate depending on different sam-
tion search has to be started. In the average case, egihg densities. All our other models of our test suite
single interpolation search nee@loglogm) evalua- show a similar behavior and it turned out thgt, =
tions of fg wherem denotes the number of points along200is the minimal number, so that the error rate of all
the shortest path betwegnandp;. intersection tests for all our models is oyl %. This

Overall, fg has to be evaluate@(alnaloglogm))  number was used for all further tests.

times in the average case where we assume a unifor, . .
and independent distribution of the point clouds. A .2 Interpolation Search vs Randomized

N > m and a is constant, this number can also be Sampling

bounded byO(loglogN). In order to evaluate the performance of our new algo-
rithm, we compared it to the simpler randomized sam-

> RESULTS pling technique (RST) proposed in [11]. No BV hierar-

We implemented our new algorithm in C++. As of yet,chies were used.

the implementation is not fully optimized. All results The number of sample pointg that have to be gen-

were obtained on a 2.8 GHz Pentium-IV. erated for the RST can be determined as proposed in
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Figure 9: The plot shows the runtime depending on the

89036 27727 62299 197315 size of the point clouds. The runtime is the average of
Figure 8: Some of the models of our test suite (cour- g timings for distances between 0 and 1.5.

tesy of Polygon Tech. Ltd and Stanford). The numbers

are the sizes of the respective point clouds. 6 CONCLUSION AND FUTURE

WORK
Section 4.6, depending on the saméhat is used for

our new approach. As this number would always bé(Ve have presented a novel algorithm for sampling the

large, we once again terminate both collision detectiol?ters_ection curves betwee_n surfaces defined implicitly
algorithms after the first intersection is found. y point clouds with the weighted least-squares method

However, in the case of non-collision, in particular inplus proximity graph. It can be used, forinstance, to ac-

the case of small distances between the objects, the i elerate hierarchical collision detection or Boolean op-

time of the RST would be very long because of the Iarggrgtllorn; or:(;[ZLshk(lar)l(d I?)fitgbtjﬁgt rr%izasi?ntigorﬁ by inter-
ns, which is a big drawback of the old method. There- Y P P y graph by

fore, if ns is too large, we bound this number by 500.polation search along shortest paths in the graph. The

Note that in such cases the old method fails to repo%?(_:hnlque_of_randommed sampling has proven to be ef-
Icient for initializing that search.

all intersection tests correctly, in contrast to our new Our measurements show that the number of function
method, which is another drawback of the old method.

Fiqure 10 shows that the collision queries can be a evaluations is reduced by an order of magnitude and a
swe?ed much more quickly by our ne?/v aporoach r%peedup of factor 5-10 is achieved in many cases, com-
q y oy PP ) pared to a previous randomized sampling technique.

I'T'rt]? cortr'espondlbngfnumdb.erlgf evalli?tltln\lnst Oi;hft'r:”' Moreover, theoretical and experimental evidence is
piici buncflon Clan o€ found in Figure h. ote fah egiven that the runtime grows only &sglogN, (N = the
number of evaluations can exceeglin the case of the .. o¢the point clouds).

RST, since for each random point two evaluations are We believe that this work opens up a number of fur-

necessary. ther avenues for future work. Our new approach could

. . . . be a way to handlgeformablepoint clouds, since it
5.3 Timings depending on Point Density does not utilize any spatial acceleration structure and

Figure 9 shows the runtime for detectiaf) intersec- the SIG can be updated in tinlog”N). From a the-
tions between two objects, depending on different derfretical point of view, a mathematically more rigorous

sities of the point clouds. We define the density of afgStimation of the minimal sampling density would be

objectAwith N points as the ratio dfl over the number aPpealing.
of volume units of the AABB ofA (which is at most 8
as each object is scaled uniformly so that it fits into éACKNOWLEDGEMENTS
cube of size2®). This experiment supports our theoret-This work was partially supported by DFG grant
ical considerations of Section 4.7. DA155/29-1 “Benutzerunterstitzte Analyse von
Note that the CPSP maps (see Section 3.2) were bulaterialfluBsimulationen in virtuellen Umgebun-
so that the time for evaluating the implicit function re-gen” (BAMSI), and the DFG program “Aktionsplan
mains constant. Informatik” by grant ZA292/1-1.
We also measured the time that would be needed t
compute all nodes on the shortest path betwggrm;) '& PROOF OF LEMMA 1
used to initialize the interpolation search (see AlgoWe can reduce the problem to a simple urn model.
rithm 2). For all our models, this was at mdfi% of Givena bins (corresponding to the number of surfels),
the overall runtime. Therefore, one can save a signifhow many balls (corresponding to the number of points
cant amount of memory in the CPSP map by computintp be drawn) have to be thrown i.i.d. into the bins so that
arrayP in Algorithm 1 during run-time. every bin gets at least one ball with high probability?
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Figure 10: Timings for different models. Comparison of our novel technique and RST [11].
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Figure 11: The number of evaluations of f(x) can be decreased by an order of magnitude by our new approach.

Let X denote the number of drawings required to pupo]

at least one ball into each bin. It is well known that
the expectation value of is a-Hy whereHj, is thea-th

harmonic number [15, p. 571]. 10

Let ¢ be an arbitrary constant. Theth harmonic
number is abouha + 1 which is asymptotically sharp,

and soc-a additional balls are enough to fill each bin[11]

with probability p which depends on. Thereforen =

alna+ c-a pointse Vol(ANB) have to be generated.
To compute the dependence pfon ¢, we refer to

the proof given by Motwani and Raghavan [15, p. 61ff].

They showed that the probabilify=Pr[X <n| = e’ 3

for a sufficiently large number of bins.

(14]

REFERENCES

pages 651-656, 2003.
[2] Anders Adamson and Marc Alexa. Approximating and inter-

secting surfaces from points. Rroc. Eurographics Symp. on [17]

Geometry Processingages 230-239, 2003.
[3] Anders Adamson and Marc Alexa. Approximating bounded,

non-orientable surfaces from points. $inape Modeling Inter- [18]

national pages 243-252, 2004.

[4] Anders Adamson and Marc Alexa. On normals and projectiori19]

operators for surfaces defined by point sets.Eimographics
Symp. on Point-Based Graphjgmges 149-155, 2004.

[5] Nina Amenta and Yong Kil. Defining point-set surfaces. In[20]

Proc. of SIGGRAPHpages 264—-270, 2004.

[6] Elizabeth D. Boyer, L. Lister, and B. Shader.
influence graphs using the sup-norMathematical and Com-
puter Modelling 32(10):1071-1082, 2000.

[71 Thomas H. Cormen, Charles E. Leiserson, and Ronald L[22]

Rivest. Introduction to AlgorithmsThe MIT Press, 1990.

[12

[15]
[1] Bart Adams and Philip Dutré. Interactive boolean operations
on surfel-bounded solids. IRroc. of SIGGRAPHvolume 22, [16]

Sphere-of{21]

(8]

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald23]
and Werner Stuetzle. Surface reconstruction from unorganized
points. InProc. of SIGGRAPHpages 71-78, 1992.

J. W. Jaromczyk and Godfried T. Toussaint. Relative neigh-
borhood graphs and their relatives. Proc. of the IEEE vol-
ume 80, pages 1502-1571, 1992.

Richard Keiser, Matthias Mueller, Bruno Heidelberger,
Matthias Teschner, and Markus Gross. Contact handling for
deformable point-based objects. VWision, Modeling, Visual-
ization (VMV) pages 315-322, 2004.

Jan Klein and Gabriel Zachmann. Point cloud collision detec-
tion. In Computer Graphics Forum (Proceedings of EURO-
GRAPHICS 2004)ages 567-576, 2004.

Jan Klein and Gabriel Zachmann. Proximity graphs for defin-
ing surfaces over point clouds. Eurographics Symposium on
Point-Based Grahicgpages 131-138, 2004.

D. H. McLain. Drawing contours from arbitrary data points.
Computer Journall7(4):318-324, 1974.

T. S. Michael and Thomas Quint. Sphere of influence graphs
and the &-metric.

R. Motwani and P. RaghavarRandomized AlgorithmsCam-
bridge University Press, 1995.

Hanspeter Pfister, Jeroen van Baar, Matthias Zwicker, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. InProc. of SIGGRAPHpages 335-342, 2000.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C Cambridge
University Press, Cambridge, England, 2nd edition, 1993.

C.A. Rogers. Covering a sphere with spherésathematika
10:157-164, 1963.

Szymon Rusinkiewicz and Marc Levoy. QSplat: A multires-
olution point rendering system for large meshes. Phoc. of
SIGGRAPH pages 343-352, 2000.

Robert Sedgewick Algorithms Addison-Wesley, Reading, 2
edition, 1989.

Sotoshi Tanaka, Yasushi Fukuda, and Hiroaki Yamamoto.
Stochastic algorithm for detecting intersection of implicit sur-
faces.Computers and Graphic24(4):523 — 528, 2000.

T. Lewis V. Barnett. Outliers in Statistical Data John Wiley
and Sons, New York, 1994.

Gabriel Zachmann. Minimal hierarchical collision detection. In
Proc. ACM Symposium on Virtual Reality Software and Tech-
nology (VRST)pages 121-128, 2002.



