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ABSTRACT

We present a novel algorithm to compute intersections of two point clouds. It can be used to detect collisions between implicit
surfaces defined by two point sets, or to construct their intersection curves. Our approach utilizes a proximity graph that allows
for quick interpolation search of a common zero of the two implicit functions.
First, pairs of points from one point set are constructed, bracketing the intersection with the other surface. Second, an inter-
polation search along shortest paths in the graph is performed. Third, the solutions are refined. For the first and third step,
randomized sampling is utilized.
We show that the number of evaluations of the implicit function and the overall runtime is inO(log logN) in the average case,
whereN is the point cloud size. The storage is bounded byO(N).
Our measurements show that we achieve a speedup by an order of magnitude compared to a recently proposed randomized
sampling technique for point cloud collision detection.

Keywords: Collision detection, weighted least squares, proximity graphs, implicit surfaces.

1 INTRODUCTION

In the past few years, point clouds have had a renais-
sance caused by the wide-spread availability of 3D
scanning technology. Interaction with objects thus rep-
resented often requires intersection tests between pairs
of objects. Other applications, such as Boolean oper-
ations [1] or physically-based simulation [10], require
fast construction of points on the intersection curves.

In order to do that, one must define an appropri-
ate surface (even if it is not explicitly reconstructed).
The simple weighted least-squares (WLS) definition of
point cloud surfaces is quite attractive and can be eval-
uated very fast [3]. In order to overcome a problem
caused by Euclidean distances in the weighting func-
tions, [12] proposed a method that utilizes (concep-
tually) a Voronoi diagram and a geometric proximity
graph to approximate geodesic distances between the
query point and the cloud points.

In this paper, we present a method that can quickly
find intersection points on objects represented by point
clouds. It converges even if the sampling is sparse,
compared to the surface areas, and even if the distance
between the surfaces contains local minima.

The idea is to utilize a proximity graph over the point
clouds and perform interpolation search along geodesic
paths through these graphs. The search is initialized
by randomized sampling that tries to find two points on
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Figure 1: One of our point clouds for benchmarking our
novel intersection method (> 137000points).

one object and on different sides of the other object.
Then, our interpolation search converges quickly to an
approximate intersection point. Finally, the space sur-
rounding that is sampled to get very accurate (discrete)
intersection points.

Our new algorithm can be combined very easily with
any acceleration data structure for collision detection or
intersection construction. For instance, with bounding
volume hierarchies [11], the algorithm presented here
would be invoked at the leaves.

In the following, we will first give a review of related
work. Section 3 gives a quick recap of the WLS surface
definition and the proximity graph we are using. Sec-
tion 4 describes the details of our new algorithm while
Section 5 shows its performance.

2 RELATED WORK
An attractive way of handling point clouds is to define
the surface as the zero set of animplicit function that is
constructed from the point cloud. Usually, this function
is not given analytically but “algorithmically” [2, 3, 4].
This is a general method that can be used for recon-
struction as well as ray-tracing or collision detection.
Another very popular method is to define the surface as
the set of fixed points of a projection operator based on
local polynomial regression [5].



Geometric queries on point clouds have been studied
extensively. An interesting result related to our problem
can be found in [7, p. 908f]. They use a divide-and-
conquer algorithm to find the closest pair ofn points
in time O(nlogn) which is, of course, not applicable to
realtime collision detection.

However, there is very little literature on geometric
queries on the implicit surfaces defined by such object
representations. The work most related to ours is [21].
They sample an implicit function with a stochastic dif-
ferential equation to detect intersections. Since it is a
method for general implicit surfaces, they do not ex-
ploit the proximity graph available here. In addition,
our new method is much simpler.

In [11] a bounding volume (BV) hierarchy for point
cloud collision detection was proposed. The BV traver-
sal first visits leaves where intersections are more likely.
Then, a sampling technique similar to [21] determines
the intersection points.

An algorithm to perform Boolean operations on
solids was presented in [1]. However, their algorithm
does not work for surfaces implicitly defined, and it
requires closed surfaces.

As mentioned above, our method is based on prox-
imity graphs, which have been studied extensively in
the past decade. There is a broad spectrum of them,
including the Delaunay graph, nearest-neighbor graph,
γ-graph,α-shape, and the spheres-of-influence graph,
to name but a few; see [9] for a good survey.

3 IMPLICIT SURFACE MODEL
In this section, we give a quick recap of the weighted
least-squares (WLS) method [2, 3], which was origi-
nally introduced by McLain [13] in the context of con-
touring, plus its geodesic extension based on proximity
graphs [12].

3.1 Weighted Least Squares
Let a point cloudP with N points pi ∈ R3 be given.
Then, an appealing definition of the surface fromP is
the zero setS= {x | f (x) = 0} of an implicit function

f (x) = n(x) · (a(x)−x) (1)

wherea(x) is the weighted average of all pointsP

a(x) = ∑N
i=1 θ(x, pi)pi

∑N
i=1 θ(x, pi)

. (2)

Usually, a Gaussian kernel (weight function)

θ(x, p) = e−d(x,p)2/h2
, d(x, p) = ‖x− p‖, (3)

is used, but other kernels work as well.
The bandwidthh of the kernel allows us to tune the

decay of the influence of the points. It should be chosen
such that no holes appear.

The normal n(x) is defined as the direction of
smallest weighted covariance, which is the small-
est eigenvector of the centered covariance matrix
B(x) = {bi j (x)} with

bi j (x) =
N

∑
k=1

θ(x, pk)(ei(pk−a(x)))(ej(pk−a(x)))

(4)
whereei , i ∈ {0,1,2} is a basis ofR3.

The above definition can produce artifacts in the sur-
faceS, which are mainly caused by the Euclidean dis-
tance functiond(x, p) that does not take the topology
of S into account. This problem can be solved by us-
ing a different distance functiondgeo(x, p) in (3) that
is based on geodesic distances on the surfaceS. There-
fore, a geometric proximity graph can be utilized where
the nodes are points∈P. Then, geodesic distances be-
tween the points can be approximated by shortest paths
on the edges of the graph.

We use the followinggeodesic kernel:

θ(x, p) = e−dgeo(x,p)2/h2
(5)

when computingf by (1)–(4).

3.2 Geodesic Distance Approximation

There is a whole spectrum of different proximity graphs
over a setP of points. We decided to use the the
sphere-of-influence graph (SIG) as it has reduced ar-
tifacts in WLS point cloud surfaces dramatically [12].
In this section, we will give a short overview of this
fairly little known proximity graph [6, 14]. Moreover,
we will shortly summarize how to precompute and store
the geodesic distances.

The Sphere-of-Influence Graph (SIG). The idea is to
connect points if their “spheres of influence” intersect.
More precisely, for each pointpi the distancedi to its
nearest neighbor (NN) is determined and two pointspi

andp j are connected by an edge if‖pi− p j‖ ≤ di +d j .
As a consequence, the SIG tends to connect points

that are “close” to each other relative to the local point
density. In noisy or irregularly sampled point clouds,
however, a lot of isolated “mini-clusters” can appear,
even though there are no holes in the original surface.
Because our root bracketing will utilize the graph, it
would fail in such a situation.

Therefore, we use ther-SIG(P): instead of comput-
ing the distance to the NN for each node, we compute
the distance to ther-nearest neighbor and then proceed
as in the case ofr = 1. That means, the largerr, the
more nodes are directly connected by an edge. In our
experience, it seems best to chooser = 3 or r = 4, and
then prune away all “long” edges by an outlier detection
algorithm [22].
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Figure 2: Outline of our point cloud collision detection.

Precomputing Geodesic Distances.Computing short-
est paths on-the-fly during the collision detection pro-
cess would be, of course, prohibitively expensive, so we
pre-compute and store them in aclose-pairs shortest-
paths(CPSP) map [12].

Since the Gaussian (3) decays fairly quickly, we need
to store only paths up to some length for defining the
surface. The contribution of nodes in Equations 2 and 4
that are farther away can be neglected. That means, for
each pointpi we have to run a single-source-shortest
path algorithm, but only for points whose influence in
pi is larger than some small threshold.

In [12] it is shown that all these geodesic distances
for a whole point cloud of sizeN can be computed and
stored inO(N) time and space.

4 POINTS ON THE INTERSECTION

Given two point cloudsA andB, the goal is to deter-
mine whether or not there is an intersection, i.e., a com-
mon root fA(x) = fB(x) = 0, and, possibly, to compute
a sampling of the intersection curve(s), i.e., of the set
Z = {x | fA(x) = fB(x) = 0}. Both can be achieved
very quickly by exploiting the proximity graph.

First, our algorithm tries to bracket intersections by
two points on one surface and on either side of the other
surface (see Figure 2). Second, for each such bracket,
it finds an approximate point in one of the point clouds
that is close to the intersection (see Figure 3). Finally,
this approximate intersection point is refined by subse-
quent randomized sampling. This last step is optional,
depending on the accuracy needed by the application.

In the following, we describe each step in detail.

4.1 Root Bracketing

Finding common roots of two (or more) nonlinear func-
tions is extremely difficult [17]. Even more so here, be-
cause the functions are not described analytically, but
algorithmically.

As mentioned before, our algorithm starts by con-
structing random pairs of points on different sides of
one of the surfaces. The two points should not be too
far apart, and, in addition, the pairs should evenly sam-
ple the surface.

An exhaustive enumeration of all pairs is, of course,
prohibitively expensive. Therefore, we propose the fol-
lowing randomized (sub-)sampling procedure.

+
+

-
-
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Figure 3: Two point clouds A and B and their inter-
section spheres I1 and I2. Our root finding procedure,
when initialized with p1, p2∈A, will find an approximate
intersection point inside the intersection sphere I1.

Assume that the implicit surface is conceptually(!)
approximated by surfels (2D discs) of equal size [16,
19]. Let Box(A,B) = Box(A)∩Box(B) andA = A∩
Box(A,B). Then, we want to randomly draw a sub-
setA′ ⊂ A such that each surfelsi gets occupied by at
least onepi ∈ A′; here, “occupied bypi” means that
the projection ofa(pi) along the normaln(pi) onto the
supporting plane ofsi lies within the surfel’s radius.

For eachpi we can easily determine another pointp j

(if any) in theneighborhoodof pi so thatpi andp j lie
on different sides offB. We represent the neighborhood
of a pointpi by a sphereCi centered atpi .

An advantage of this is that the application can spec-
ify the density of the intersection points that are to be
returned by our algorithm. From these, it is fairly easy
to construct a discretization of the complete intersection
curves (e.g., by utilizing randomized sampling again).

Note that we never need to actually construct the
surfels, or assign the points fromA explicitly to the
neighborhoods, which we describe in the following.
Section 4.2 describes how to choose the radius of the
spheresCi .

In order to find ap j ∈ A∩Ci on the “other side” of
fB, we usefB(pi) · fB(p j) ≤ 0 as an indicator. This, of
course, is reliable only if the normalsn(x) are consistent
throughout space. If the surface is manifold, this can be
achieved by a method similar to [8].

Utilizing our proximity graph (which is a supergraph
of the nearest-neighbor graph), we can propagate a nor-
mal to each pointpi ∈ A. Then, when definingf (x),
we choose the direction ofn(x) according to the normal
stored with the NN ofx in A.1

In order to sampleA such that each (conceptual) sur-
fel is represented by at least one point in the sample, we
use the following

Lemma 1
Let A be a uniformly sampled point cloud. Further,
let SA denote the set of conceptual surfels approxi-
mating the surface ofA inside the intersection volume

1 Surprisingly, the direction ofn(x) is consistent over fairly large vol-
umes without any preconditioning.
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Figure 4: If the spherical neighborhoods Ci (red) are
too small, not all collisions can be found. (i) adjoining
neighborhoods do not overlap sufficiently, their inter-
section contains no randomly chosen cloud point. (ii)
surface is not covered by neighborhoods Ci .

of A and B, and leta = |SA|. Then, in order to oc-
cupy each surfel with at least one point with probability
p = e−e−c

, wherec is an arbitrary constant, we have to
drawn= O(alna+c·a) random and independent points
from A. These points are denoted asA′.

Proof: see Appendix A.
For instance, if we wantp≥ 97%, we have to choose

c= 3.5, and ifa= 30, thenn≈ 200random points have
to be drawn.

The next section will show how to choose an appro-
priate size for the neighborhoodsCi . After that, Sec-
tion 4.3 will propose an efficient way to determine the
other partp j of the root brackets, given a pointpi ∈ A′.

4.2 Size of Neighborhoods
The radius of the spherical neighborhoodsCi has to be
chosen so that, on the one hand, allCi cover the whole
surface defined byA. On the other hand, the intersec-
tion with each adjoining neighborhood ofCi has to con-
tain at least one point inA′ so as to not miss any col-
lisions lying in the intersection of two neighborhoods.
The situation is illustrated in Figure 4.

To determine the minimal radius of a spherical neigh-
borhoodCi , we introduce the notion ofsampling radius.

Definition 1 (Sampling radius)
Let a point cloudA as well as a subsetA′ ⊆ A be given.
Consider a set of spheres, centered atA′, that cover the
surface defined byA (not A′), where all spheres have
equal radius. We define the sampling radiusr(A′) as
the minimal radius of such a sphere covering.

It is easy to see that spheres with radius2r(A′) centered
at points inA′ contain always points of the neighboring
spheres and, of course, cover the surface.

The sampling radiusr(A′) can obviously be estimated
as the radiusr of a surfelsi ∈ SA.

Let FA denote the surface area of the implicit surface
overA. Then, the surfel radiusr can be determined by

FA

a
= πr2 ⇒ r =

√
FA

aπ
.

Assume that the implicit surface overA can also be
approximated by surfels of sizer(A). Then,FA can be
estimated by

FA = |A| ·πr(A)2.

Overall,r(A′) can be estimated by

r(A′) = r(A) ·
√
|A|
a
≈ r(A) ·

√
Vol(A,B)
Vol(A) ·a · |A|.

The size ofA can easily be estimated depending on the
ratio of Vol(A) andVol(A,B), the sampling radiusr(A)
can easily be determined in the preprocessing.

4.3 Completing the Brackets
Given a pointpi ∈A′, we have to determine other points
p j ∈ A′ ∩Ci on the other side offB in order to bracket
the intersections. From a theoretical point of view, this
could be done by testingfB(pi) · fB(p j) ≤ 0 for all
pointsp j ∈A′∩Ci in timeO(1) because|A′| can be cho-
sen constant (see Section 5.1). In practice however, the
setA′∩Ci cannot be determined quickly. Therefore, in
the following, we propose an adequate alternative that
works in timeO(log logN).

We observe that A′ ∩ Ci ≈ A′ ∩ Ai , where
Ai := {x | 2r(A′) − δ ≤ ‖x− pi‖ ≤ 2r(A′)} is an
anulusaroundpi (or, at least, these are thep j that we
need to consider to ensure a certain bracket density).
By construction ofA′, A′∩Ai has a similar distribution
as A∩Ai . Observe further, that we don’t necessarily
needp j ∈ A′.

Overall, the idea is to construct a random sampleBi ⊂
A∩Ci such thatBi ⊂ Ai , |Bi | ≈ |A′ ∩Ai |, and such that
Bi has a similar distribution asA′∩Ai .

This sampleBi can be constructed quickly by the help
of Lemma 1: we just choose randomlyO(blnb) many
points fromA∩Ai , whereb := |A′∩Ci |.

We can describe the setA∩Ai very quickly, if the
points in the CPSP map stored withpi are sorted by
their geodesic2 distance frompi . Then we just need to
use interpolation search to find the first point with dis-
tance2r(A′)−δ and the last point with distance2r(A′)
from pi . This can be done in timeO(log log|A∩Ci |)
per pointpi ∈ A′. Thus, the overall time to construct all
brackets is inO(log logN).

4.4 Interpolation Search
Having determined two pointsp1, p2 ∈ A on different
sides of surfaceB, the next goal is to find a point̂p∈ A
“between” p1 and p2 that is “as close as possible” to
B. In the following, we will call such a pointapprox-
imate intersection point(AIP). The true intersection

2 By using the geodesic distance (or, rather, the approximation thereof)
we basically impose a different topology on the space whereA is
embedded, but this is actually desirable.



l , r = 1,n
dl ,r = fB(P1), fB(Pn)
while |dl |> ε and|dr |> ε andl < r do

x = l + d −dl
dr−dl

(r− l)e {*}
dx = fB(Px)
if dx < 0 then

l , r = x, r
else

l , r = l ,x

Algorithm 1: Pseudo-code of our root finding algorithm
based on interpolation search. P is an array containing
the points of the shortest path from p1 = P1 to p2 = Pn,
which can be precomputed. di = fB(Pi) approximates
the distance of Pi to object B. (*) Note that either dl or
dr is negative.

curve fB(x) = fA(x) = 0 will pass close top̂ (usually,
it does not pass through any points of the point clouds).

Depending on the application,̂p might already suf-
fice. If the true intersection points are needed, then we
refine the output of the interpolation search by the pro-
cedure described in Section 4.6.

Here, we can exploit the proximity graph: we just
consider the pointsP12 that are on the shortest path
betweenp1 and p2, and we look forp̂ that assumes
minp∈P12{| f (p)|}.

Let us assume thatfB is monotonic along the path
p1p2. Then, instead of doing an exhaustive search
along the path, we can utilize interpolation search to
look for p̂ with f (p̂) = 0.3 This makes sense here, be-
cause the “access” to the key of an element, i.e., an
evaluation of fB(x), is fairly expensive [20]. The av-
erage runtime of interpolation search is inO(log logm),
m= number of elements.

Algorithm 1 for our interpolation search assumes that
the shortest paths are precomputed and stored in the
CPSP map (Section 3.2). Analogously to [12], it is easy
to see that the storage is still linear.

However, in practice, the memory consumption could
be too large for huge point clouds. In that case, we
can compute the pathP on-the-fly at runtime by Algo-
rithm 2. Theoretically speaking, the overall algorithm
is now in linear time. However, in practice, it still be-
haves sublinear because the reconstruction of the path is
negligible compared to evaluatingfB (see Section 5.3).

If fB is not monotonic along the paths between the
brackets, but the sign offB(x) is consistent, then we
can utilize binary search to find̂p. The complexity in
that case is, of course,O(logm).

3 In practice, the interpolation search will never find exactly such ap̂,
but instead a pair of adjacent points on the path that straddleB

q.insert(p1); clearP
repeat

p = q.pop
P.append(p )
for all pi adjacent top do

if dgeo(pi , p2) < dgeo(p1, p2) then
insertpi into q with priority dgeo(pi , p2)

until p = p2

Algorithm 2: This algorithm can be used to initialize P
for Algorithm 1 if storing all shortest paths in the CPSP
map is too expensive. (q is a priority queue.)

4.5 Models with Boundaries
If the models have boundaries and the sampling rate
of our root bracketing algorithm is too low, not all in-
tersections will be found (see Figure 5). In that case,
some AIPs might not be reached, because they are not
connected through the proximity graph.

Therefore, we propose to modify ther-SIG. After
constructing the graph, we usually prune away all
“long” edges by an outlier detection algorithm (see
Section 3.2). Now, we only mark these edges as
“virtual”. Thus, we can still use ther-SIG for defining
the surface as before. For our interpolation search,
however, we can also use the “virtual” edges so that
small holes in the model are bridged.

4.6 Precise Intersection Points
If two point clouds are intersecting, our interpolation
search computes a set of AIPs. Anintersection sphere
of radiusr = max(‖x− p̂1‖,‖x− p̂2‖) contains a true
intersection point, where the sphere is centered at

x =
1

d1 +d2
(d2 p̂1 +d1 p̂2),

the p̂i have been computed by the interpolation search,
lying on different sides of surfaceB, anddi = fB(pi).
This idea is illustrated in Figure 6. So if the AIPs are not
precise enough, then we can sample each such sphere to
get more accurate (discrete) intersection points.

More precisely, if a precise collision point’s distance
from the surfaces is to be smaller thanε2, we cover a
given intersection sphere bys smaller spheres withdi-
ameterε2 and sample that volume byslns+ cs many
points so that each of thes spheres gets a point with
high probability (see Appendix A). For each of these,
we just determine the distance to both surfaces.

Rogers [18] showed that a sphere with radiusa·b can
be covered by at mosts = d√3ae3 smaller spheres of
radiusb. Since we would like to cover the intersec-
tion sphere by spheres with radiusb= ε2/2, we have to
choosea = 2r/ε2, so thata·b = r. As a consequence,

s= d
√

3
2r
ε2
e3.
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Figure 5: Models with boundaries can cause errors (I1
could remain undetected), which can be avoided by
“virtual” edges in the proximity graph.
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Figure 6: An intersection sphere centered at x contains
a true intersection point. Its radius r can be computed
approximately by the help of the two AIPs p̂1 and p̂2.
The center is determined by the intercept theorem.

For example, to cover an intersection sphere with
spheres ofradiusε, thenε2 = 2ε ands= d√3r/εe3.

4.7 Complexity Considerations
In this section we analyze the runtime of our approach
and the number of evaluations of the implicit function
that are necessary to detect all intersections for a given
sampling density described by the numbera of surfels.

In general, evaluatingf (x) takesO(logN) time, even
if the support of the kernel is bounded, because the NN
of x has to be determined (using, for instance, akD-
tree). Here, fortunately, one evaluation can be done in
only O(1) time: the root bracketing and interpolation
search evaluatef (x) only at pointsx∈ A∪B, and com-
puting the precise intersection points can use a brute
force NN search in constant time, starting from the AIP.

As already shown in Section 4.3, our root bracketing
algorithm takesO(log logN) time in the worst case.

Then, for at mostO(alna) many pairs, our interpola-
tion search has to be started. In the average case, each
single interpolation search needsO(log logm) evalua-
tions of fB wheremdenotes the number of points along
the shortest path betweenpi andp j .

Overall, fB has to be evaluatedO(alnalog logm))
times in the average case where we assume a uniform
and independent distribution of the point clouds. As
N À m and a is constant, this number can also be
bounded byO(log logN).

5 RESULTS
We implemented our new algorithm in C++. As of yet,
the implementation is not fully optimized. All results
were obtained on a 2.8 GHz Pentium-IV.
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Figure 7: If the sampling density is too small, our ap-
proach can miss some intersections, n = O(alna).

For timing the performance, we used a set of ob-
jects (see Fig. 8), most of them with several resolu-
tions. Benchmarking was performed by the procedure
proposed in [23], which computes average collision de-
tection times for a range of distances between two iden-
tical objects, which are scaled uniformly so that they fit
into a cube of size23.

5.1 Minimal Bracket Density
As mentioned before, if the number of (conceptual) sur-
fels is too small, then the size of their neighborhoods
can become too large,and, as a consequence, the like-
lihood can become too large that the normaln(x) flips
its sign withoutx actually changing sides. In that case,
our method could fail to find pairs of points on different
sides of the surface.

Therefore, we propose to estimate the minimal num-
ber of surfels (which directly influences the radius of
the spherical neighborhoods) by the following prepro-
cessing procedure. For each distance, a large number of
collisions tests is performed, each with a different con-
stellation between the objects. A collisions test stops
after the first intersection has been found. Each of these
tests is performed with a different sampling density, ex-
pressed by the numbern = O(alna) (see Section 4.1).
Then, we use the minimal sampling density for which
all collisions have been found.

The results for one object can be found in Figure 7,
which shows the error rate depending on different sam-
pling densities. All our other models of our test suite
show a similar behavior and it turned out thatnmin =
200 is the minimal number, so that the error rate of all
intersection tests for all our models is only0.1%. This
number was used for all further tests.

5.2 Interpolation Search vs Randomized
Sampling

In order to evaluate the performance of our new algo-
rithm, we compared it to the simpler randomized sam-
pling technique (RST) proposed in [11]. No BV hierar-
chies were used.

The number of sample pointsns that have to be gen-
erated for the RST can be determined as proposed in
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Figure 8: Some of the models of our test suite (cour-
tesy of Polygon Tech. Ltd and Stanford). The numbers
are the sizes of the respective point clouds.

Section 4.6, depending on the sameε that is used for
our new approach. As this number would always be
large, we once again terminate both collision detection
algorithms after the first intersection is found.

However, in the case of non-collision, in particular in
the case of small distances between the objects, the run-
time of the RST would be very long because of the large
ns, which is a big drawback of the old method. There-
fore, if ns is too large, we bound this number by 500.
Note that in such cases the old method fails to report
all intersection tests correctly, in contrast to our new
method, which is another drawback of the old method.

Figure 10 shows that the collision queries can be an-
swered much more quickly by our new approach.

The corresponding number of evaluations of the im-
plicit function can be found in Figure 11. Note that the
number of evaluations can exceedns in the case of the
RST, since for each random point two evaluations are
necessary.

5.3 Timings depending on Point Density

Figure 9 shows the runtime for detectingall intersec-
tions between two objects, depending on different den-
sities of the point clouds. We define the density of an
objectA with N points as the ratio ofN over the number
of volume units of the AABB ofA (which is at most 8
as each object is scaled uniformly so that it fits into a
cube of size23). This experiment supports our theoret-
ical considerations of Section 4.7.

Note that the CPSP maps (see Section 3.2) were built
so that the time for evaluating the implicit function re-
mains constant.

We also measured the time that would be needed to
compute all nodes on the shortest path between(pi , p j)
used to initialize the interpolation search (see Algo-
rithm 2). For all our models, this was at most10% of
the overall runtime. Therefore, one can save a signifi-
cant amount of memory in the CPSP map by computing
arrayP in Algorithm 1 during run-time.
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Figure 9: The plot shows the runtime depending on the
size of the point clouds. The runtime is the average of
all timings for distances between 0 and 1.5.

6 CONCLUSION AND FUTURE
WORK

We have presented a novel algorithm for sampling the
intersection curves between surfaces defined implicitly
by point clouds with the weighted least-squares method
plus proximity graph. It can be used, for instance, to ac-
celerate hierarchical collision detection or Boolean op-
erations on this kind of object representation.

Our approach exploits the proximity graph by inter-
polation search along shortest paths in the graph. The
technique of randomized sampling has proven to be ef-
ficient for initializing that search.

Our measurements show that the number of function
evaluations is reduced by an order of magnitude and a
speedup of factor 5–10 is achieved in many cases, com-
pared to a previous randomized sampling technique.

Moreover, theoretical and experimental evidence is
given that the runtime grows only aslog logN, (N = the
size of the point clouds).

We believe that this work opens up a number of fur-
ther avenues for future work. Our new approach could
be a way to handledeformablepoint clouds, since it
does not utilize any spatial acceleration structure and
the SIG can be updated in timeO(log3N). From a the-
oretical point of view, a mathematically more rigorous
estimation of the minimal sampling density would be
appealing.
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A PROOF OF LEMMA 1
We can reduce the problem to a simple urn model.
Givena bins (corresponding to the number of surfels),
how many balls (corresponding to the number of points
to be drawn) have to be thrown i.i.d. into the bins so that
every bin gets at least one ball with high probability?
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Figure 10: Timings for different models. Comparison of our novel technique and RST [11].
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Figure 11: The number of evaluations of f (x) can be decreased by an order of magnitude by our new approach.

Let X denote the number of drawings required to put
at least one ball into each bin. It is well known that
the expectation value ofX is a·Ha whereHa is thea-th
harmonic number [15, p. 57f].

Let c be an arbitrary constant. Thea-th harmonic
number is aboutlna ±1 which is asymptotically sharp,
and soc·a additional balls are enough to fill each bin
with probability p which depends onc. Therefore,n =
alna+c·a points∈ Vol(A∩B) have to be generated.

To compute the dependence ofp on c, we refer to
the proof given by Motwani and Raghavan [15, p. 61ff].
They showed that the probabilityp= Pr[X≤ n] = e−e−c

for a sufficiently large number of bins.
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