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Abstract

a b c d

Visualization of the moving least squares surface (magenta) over a 2D point cloud (black dots)
based on different distance functions: (a,c) Euclidean, (b,d) ours based on proximity graphs.

We present a new definition of an implicit surface over a noisy point cloud. It can be evaluated very fast, but, unlike
other definitions based on the moving least squares approach, it does not suffer from artifacts.
In order to achieve robustness, we propose to use a different kernel function that approximates geodesic distances on the
surface by utilizing a geometric proximity graph. The starting point in the graph is determined by approximate nearest
neighbor search. From a variety of possibilities, we have examined the Delaunay graph and the sphere-of-influence
graph (SIG). For both, we propose to use modifications, the r-SIG and the pruned Delaunay graph.
We have implemented our new surface definition as well as a test environment which allows to visualize and to evaluate
the quality of the surfaces. We have evaluated the different surfaces induced by different proximity graphs. The results
show that artifacts and the root mean square error are significantly reduced.

Categories and Subject Descriptors(according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation of surfaces
and contours I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations

1. Introduction

In the past few years, point clouds have had a renais-
sance caused by the wide-spread availability of scanning
technology. In order to render [PvBZG00, RL00, ZPvBG02,
BWG03] and interact [KZ04] with objects thus represented,
one must define an appropriate surface (even if it is not ex-
plicitly reconstructed).

This definition should produce a surface that is as close to
the original surface as possible. At the same time, it should
allow the object to be rendered and interacted with as fast as
possible.

In this paper, we present a new definition of a surface
over a given point cloud. It is based on moving least squares
(MLS), i.e., it is the zero set of a functionf (x) that is based
on weighted averages and MLS regression.

The simple MLS definition of point cloud surfaces is quite
attractive and can be evaluated very fast. However, it suffers
from artifacts in the surface. They are caused by a distance
function that is not adapted to the topology of the surface: the
Euclidean distance makes points “close” tox that are really
topologically far away.

The idea of our method is to utilize (conceptually) a
Voronoi diagram to find the nearest neighbor of a query point
x, and then traverse the Voronoi diagram breadth-first to
compute approximate geodesic distances between the query
point and the cloud points. Since the Voronoi diagram basi-
cally provides an adjacency relation based on some notion of
proximity, we can also use otherproximity graphs. Here, we
investigate also thesphere-of-influence graph, and a gener-
alization, that provides a natural notion of proximity in our
context.
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This way, our new method offers the advantages of MLS,
but does not suffer from robustness issues and offers the po-
tential to handle non-uniform point clouds.

In order to evaluate the quality of our surfaces we gen-
erate noisy point clouds from a given “exact” surface. For
these, we compute the deviation of the zero sets of the dif-
ferent definitions from the original exact surface. The results
show that our new definition produces much better surfaces.
In addition, our experiments show that our method can be
evaluated very fast.

2. Related Work

The representation of objects by point clouds is based on
some notion ofsurfacethat describes the surface in-between
the points, which are samples taken from an original surface,
usually with error.

One way is to extend the points to so-called surfels yield-
ing a piece-wise constant surface [RL00, PvBZG00]. Our
work does not deal with this kind of surface representation.

Another way is to consider the problem ofreconstruc-
tion, where a continuous surface is explicitly constructed
from the set of points, usually in the form of a polyg-
onal mesh. Several methods can be distinguished; an at-
tractive one arecombinatorial methods because they can
guarantee the reconstructed mesh to be homeomorphic to
the original surface under some reasonable assumptions
[ASCL02,DG03]. Other methods are more cluster- or graph-
based [HUHJ01, HDD∗92]. With the present paper, we are
not concerned with this approach, because it does not stay
within the framework of point clouds.

An attractive way of handling point clouds is to define the
surface as the zero set of animplicit function that is con-
structed from the point cloud. Usually, this function is not
analytically but “algorithmically” given. This is a general
method that can be used for reconstruction as well as ray-
tracing or collision detection.

An interesting method pursuing this approach is the use of
natural coordinates (which are based on Voronoi diagrams)
[BC00]. They are used to turn Hoppe’s discontinuous defini-
tion [HDD∗92] into a continuous one. However, computing
the natural coordinates is very expensive.

A very popular class of methods is to define the surface
locally as the graph of a function [ABCO∗03,AA03,AA04,
Lev03, AK04]. For each evaluation of the function, an ap-
proximating polynomial function needs to be computed over
a suitable projection plane, both of which are found using
MLS. They are fairly simple to implement but difficult to
make robust. In particular, non-uniform point clouds are dif-
ficult to handle generally, and there can be extra zero sets.

Recent publications have, therefore, proposed to partition
the point set by an octree and fit quadratic functions only to
leaves that are occupied by points [OBA∗03].

As mentioned above, our method is based on proxim-
ity graphs, which have been studied extensively in the past
decade. There is a broad spectrum of them, including the
Delaunay graph, nearest-neighbor graph,γ-graph,α-shape,
and the spheres-of-influence graph, to name but a few; see
[JT92] for a good survey. They have been used for OCR
[BLS00,MQ03], reconstruction [Vel93], and many other ap-
plications.

In [Lee00], a Euclidean minimum spanning tree is used to
thin out a given set of unorganized points from which one
can reconstruct the surface afterwards.

3. Moving Least Squares

In this section, we will first give a quick recap, and then ex-
plain the problem of the conventional MLS method. For sake
of clarity, all illustrations are in 2D, but the methods work in
R3 as well (and, in fact, in any dimension).

3.1. Surface Definition

Let a point cloudP with N pointspi ∈ R3 be given. Then,
an appealing definition of the surface fromP is the zero set
S= {x| f (x) = 0} of an implicit function [Lev03,AA03]

f (x) = n(x) · (a(x)−x) (1)

wherea(x) is the weighted average of all pointsP

a(x) = ∑N
i=1 θ(‖x−pi‖)pi

∑N
i=1 θ(‖x−pi‖)

. (2)

Usually, a Gaussian kernel (weight function)

θ(d) = e−d2/h2

(3)

with d = ‖x− p‖, is used, but other kernels work as well.
The global bandwidth of the kernel, given byh, allows us
to tune the decay of the influence of the points. It should be
chosen such that no holes appear [KZ04].

The normaln(x) is determined by moving least squares.
It is defined as the direction of smallest weighted covariance,
i.e., it minimizes

N

∑
i=1

(
n(x) · (a(x)−pi)

)2θ(‖x−pi‖) (4)

for fixedx and under the constraint‖n(x)‖= 1.

Note that, unlike [AA03], we usea(x) as the center of the
PCA, which makes the functionf much more aesthetically
appealing (see Figure 1). Also, we do not solve a minimiza-
tion problem like [Lev03, ABCO∗03], because we are aim-
ing at an extremely fast method.

The normaln(x) defined by (4) is the smallest eigenvector
of the centered covariance matrixB = (bi j ) with

bi j =
N

∑
k=1

θ(‖x−pk‖)(pki −a(x)i)(pk j −a(x) j ). (5)
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(a) (b) (c) (d)

Figure 1: Visualization of the implicit function f(x) over a 2D point cloud. Pointsx ∈R2 with f(x)≈ 0, i.e., points on or close
to the surface, are shown magenta. Red denotes f(x)� 0 and blue denotes f(x)� 0. (a) point cloud; (b) reconstructed surface
using the definition of [AA03]; (c) utilizing the centered covariance matrix produces a better surface, but it still has several
artifacts; (d) surface and function f(x) based on our more geodesic kernel using the sphere-of-influence graph.

3.2. Euclidean Kernel

The above definition can produce artifacts in the surfaceS
(see Figure 1); two typical cases are as follows. First, as-
sumex is halfway between two (possibly unconnected) com-
ponents of the point cloud; then it is still influenced byboth
parts of the point cloud, which have similar weights in Equ. 2
and 4. This can lead to anartificial zero subset⊂ S where
there are no points fromP at all. Second, let us assume thatx
is inside a cavity of the point cloud. Then,a(x) gets “drawn”
closer tox than if the point cloud was flat. This makes the
zero setbiased towards the “outside” of the cavity, away
from the true surface. In the extreme, this can lead to can-
cellation near the center of a spherical point cloud, where all
points on the sphere have a similar weight.

This thwarts algorithms based solely on the point cloud
representation, such as collision detection [KZ04] or ray-
tracing [AA04].

In all of these cases, the problem is caused by the fol-
lowing deficiency in the kernel (3). The Euclidean distance
‖x−p‖, p ∈ P, can be small, while the distance fromx to
the closest point onS and then along the shortest path top
onS(the geodesic) is quite large.

The problems mentioned above could be alleviated some-
what by restricting the surface to{x : ||x−a(x)||< c} (since
a(x) must stay within the convex hull ofP). However, this
does not help in many cases involving cavities.

4. Geodesic Distance Approximation

As mentioned above, the main problems are caused by a dis-
tance function that does not take the topology ofS into ac-
count. We propose to use a different distance function that is
based on geodesic distances on the surfaceS. Unfortunately,
we do not have an explicit reconstruction ofS, and in many
applications, we do not even want to construct one.

Therefore, we propose to utilize a geometric proximity
graph where the nodes are points∈ P. In such proximity
graphs, nodesp and q are connected by an edge if some
geometric proximity predicate holds.

There is a variety of different proximity graphs over a
setP, for instance the Delaunay graph DG(P), the Gabriel
graph, the relative nearest neighbor graph, and the nearest
neighbor graph (NNG) [JT92]. The Delaunay graph is the
densest one of these, while each of the others is a subgraph of
the previous one. We chose to investigate one graph from the
dense end of the spectrum, namely DG(P), and one from the
sparse end. Clearly, the NNG is too sparse, so we chose to
investigate the sphere-of-influence graph SIG(P), for which
we also propose and utilize a nice generalization.

In the following, the length of an edge is the Euclidean
distance‖p−q‖ (or any other metric).

4.1. Geodesic Kernel

Given a proximity graph, we compute a restrictedall pairs
shortest paths (APSP) matrix. Computing and storing the
full matrix would be, of course, prohibitively expensive.
Since our kernel (3) decays fairly quickly (for reasonable
choices ofh), we need to store only paths up to some length;
the contribution of nodes in Equations 2 and 5 that are far-
ther away can be neglected. In Section 4.2, we show that the
resulting matrix can be computed and stored inO(N) time
and space using a simple lookup table. Therefore, we denote
it just as CPSP (close-pairs shortest-paths) map.

We now define a new distance function‖x−p‖geo as fol-
lows. Given some locationx, we compute its approximate
nearest neighborp∗ ∈ P; using a simple k-d tree, this can
be done inO(log3 N) in 3D [AMN∗98]. An exact nearest
neighbor could be found in timeO(logN) using a Delaunay
hierarchy [Dev02], but this may not always be practical.
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p
‖x− p‖x
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Figure 2: Instead of the Euclidean distance‖x−p‖, we use
an approximate geodesic distance‖x−p‖geo based on the
close-pairs shortest-paths matrix over a proximity graph.

Starting fromp∗, we determine the distanced(p∗,p) for
any p ∈ P as the accumulated length of the shortest path
from p∗ to p, multiplied by the number of “hops” along
the path. This can be retrieved readily from the precomputed
CPSP map. Overall,‖x−p‖geo is defined by

‖x−p‖geo = ‖x−p∗‖+d(p∗,p) (6)

Figure 2 illustrates this idea.

The rationale for multiplying the path length by the num-
ber of hops is the following: if an (indirect) neighborp is
reached by a shortest path with many hops, then there are
many points inP that should be weighted much more than
p, even if the Euclidean distance‖p∗−p‖ is small. This is
independent of the concrete proximity graph used for com-
puting the shortest paths.

Overall, when computingf by (1)–(5), we use‖· · ·‖geo

in (3). We call this modified kernel ageodesic kernel.

4.2. Close-Pairs Shortest-Paths Map

In this section, we show that our CPSP map can be computed
and stored inO(N) with N = |P|.

Definition 1 (Sampling radius) Consider a set of spheres,
centered at pointspi ∈ P, that cover the surface defined by
P, where all spheres have equal radius. We define the sam-
pling radiusr(P) as the minimal radius of such a sphere
covering.

In [KZ04] it is shown, that the bandwidthh should be cho-
sen such that points up to a distance of aboutm· r(P) around
a point pi ∈ P have an influence in Equ. 1 (m≈ 5). That
means, for each pointpi ∈ P we have to run a SSSP algo-
rithm for all points lying in the sphereSi with radiusm· r(P)
centered atpi . The following lemma shows, that only a con-
stant number of points is insideSi , if P is a uniform (pos-
sibly noisy) sampling of a surface. As a consequence, we
have to startN times a SSSP algorithm for a constant num-
ber of points. Overall, our CPSP map can be computed in
timeO(N).

Lemma 1 Let a point cloudP with uniformly distributed
points pi ∈ Rd (d ∈ {2,3}) and sampling radiusr(P) be
given. Then, at mostd

√
d ·med points∈ P lie in a sphere

with radiusm· r(P).

m r(P)

r(P) m=4

Figure 3: Under reasonable assumptions, the close-pairs
shortest-paths matrix has size O(N). Left: a sphere with ra-
dius m· r(P) can be covered by O(m3) spheres with radius
r(P). Right:d

√
2 ·me2 uniformly distributed points inside.

Proof: In the following, we consider only the 3D case
(d = 3), the 2D case can be shown analogously.

A sphereS1 with radiusm· r(P) can be covered with at
most c := d

√
3 ·me3 smaller spheres of radiusr(P). This

has already been shown by Rogers [Rog63]: the sphereS1
can be covered by a cube with side length 2mr(P) and
the smaller spheres with radiusr(P) cover cubes with side
length

√
4/3r(P) (see Fig. 3 left). As a consequence, the

larger cube can be covered byd2mr(P)/
√

4/3r(P)e3 = c
smaller cubes and therefore by the same number of spheres
with radiusr(P).

That means,c uniformly distributed spheres of radius
r(P) with centers inS1 coverS1. Only if the spheres are not
uniformly distributed, more thanc spheres with sampling ra-
diusr(P) are necessary to coverS1.

Note that in practice often much fewer points thanc lie
insideS1, in most casesk· d

√
d−1·med−1 are realistic (k is

a small constant of about 2 or 3).

For memory efficiency reasons, we store the CPSP matrix
in a hash table of sizeO(N) instead of using aN2 matrix.

4.3. Proximity by Delaunay Graph

It is very intuitive to use the Delaunay graph DG(P) for
our problem (which can be computed efficiently inO(N)
time in 3D for uniform point clouds), because [ASCL02]
described an intriguing algorithm for reconstructing a polyg-
onal surface over a point cloud without noise from the
Voronoi diagram (which is the dual of the Delaunay graph).
In addition, [DG04] used it as reasonable noise model. So,
it is obvious that geodesic distances between the points
can be approximated by shortest paths on the edges of the
graph. This approximation can be improved if we also al-
low paths across the polygonal tessellation, not only on the
edges [KS00,CH90].

Since the DG(P) induces a neighborhood relation that
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(a) (b) (c) (d) (e)

Figure 4: Different proximity graphs. (a)DG(P), (b)
DG(P) where edges are pruned according to a global sam-
ple density, (c)DG(P), pruning by first quartile, (d)DG(P),
pruning by second quartile, (e)SIG(P).

also includes “long distance” neighborhoods, some shortest
paths can “tunnel” through space that should really be a gap
in the model (see Figure 4, left). Therefore, we prune edges
from DG(P) based on criteria that involve an estimation of
the local spatial density of the point cloud.

If our point cloud is well-sampled in the sense of
[ASCL02], then we could prune all edges incident to a point
p ∈ P that are longer than the distance ofp from the medial
axis ofS— providedwe knew that distance for eachp. This
is, of course, not feasible.

Therefore, we propose to utilize a statistical outlier detec-
tion method to prune edges. This is motivated by the obser-
vation that most of the unwanted “long distance” edges are
local outliers, or form a cluster of outliers. In the following,
we describe a simple outlier detection algorithm that seems
to perform well in our case, but, of course, other outlier de-
tection algorithms [VB94] should work as well.

In statistics, an outlier is a single observation which is
far away from the rest of the data. One definition of “far
away” in this context is “greater thanQ3 +1.5 · IQR” where
Q3 is the third quartile, andIQR is the interquartile range
(equal toQ3−Q1). As a consequence, for each node in the
graph we can determine the lengths of its adjacent edges and
cut edges with length of at leastQ3 + 1.5 · IQR. However,
in most cases each node in the Delaunay graph has only a
handful of adjacent edges so that only few edges would be
pruned. Our empirical evaluation showed us, that the best
results are achieved by pruning edges with length of at least
Q2 (i.e., median).

4.4. Proximity by Sphere-of-Influence Graph

The sphere-of-influence graph (SIG) is a fairly little known
proximity graph [MQ03,BLS00] which can be computed ef-
ficiently in timeO(N) on average for uniform point sampled
models with sizeN in any fixed dimension [Dwy95]. The
idea is to connect points if their “spheres of influence” inter-
sect. More precisely, for each pointpi the distancedi to its

(a) (b) (c) (d)

Figure 5: If the proximity graph is too sparse, artifacts can
occur. (a)DG(P) where edges are pruned by second quar-
tile, (b) SIG (=1-SIG(P)), (c) 2-SIG(P) (d) 3-SIG(P). The
surface is rendered magenta.

nearest neighbor is determined and two pointspi andp j are
connected by an edge if‖pi −p j‖ ≤ di +d j .

As a consequence, the SIG tends to connect points that
are “close” to each other relative to the local point density. In
contrast to the DG(P), no “long distance” neighbor relations
are included, except for some pathological cases when the
surface is very irregularly sampled. In these cases, we could
apply once again our outlier detection algorithm proposed in
the previous section.

4.5. r-SIG

In noisy or irregularly sampled point clouds, there can be
several pairs of points that are placed much farther apart
from each other than their inter-pair separation. In such situ-
ations, the SIG(P) would consist of a lot of isolated “mini-
clusters”, even though there are no holes in the original sur-
face (see Figure 5 b). Consequently, the corresponding sur-
face could not be reconstructed correctly, because the ap-
proximated geodesic distances are too imprecise: on the one
hand, they are too large because points close together can
only indirectly be accessed through the graph by visiting
other nodes; on the other hand — in the case of uncon-
nected components — for some points in space, too few
cloud points are considered for the reconstruction.

To overcome this problem, we propose ther-th order SIG :
instead of computing the distance to the nearest neighbor for
each node, we compute the distance to ther-nearest neighbor
and then proceed as in the case ofr = 1. It is obvious that the
largerr, the more nodes are directly connected by an edge,
and that too larger can result in “long distance” edges as in
the case of the DG(P).

4.6. Reducing Discontinuities

Independent of the proximity graph being used, there can
be discontinuities in functionf and sometimes even in the
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(a) (b) (c) (d) (e)

Figure 6: Discontinuities can be avoided by our geodesic kernel‖x−p‖geo(k). (a) point cloud, (b) SIG, (c) Euclidean kernel,
(d) geodesic kernel as of Equation 6 can cause discontinuities, (e) geodesic kernel‖x−p‖geo(4) as of Equation 7 causes no
noticeable artifacts or discontinuities in the surface.

reconstructed surface (see Figure 6). These can occur at the
borders of the Voronoi regions of the cloud points. They are
more pronounced at borders where the Voronoi sites are far
apart from each other, such as those close to the medial axis.

To overcome this problem, we propose to modify our
geodesic kernel of Equation 6 to use a small set ofk-nearest
neighbors ofx to get a smooth geodesic distance over the
whole space

‖x−p‖geo(k) = min
p∗∈Pk(x)

{
‖x−p∗‖+d(p∗,p)

}
(7)

wherePk(x) denotes the set of thek-nearest neighbors in the
corresponding proximity graph.

Alternatively, this problem could possibly be solved by
utilizing natural coordinates [BC00]. However, the compu-
tational costs seem to be very high (albeit a constant factor
over insertion of a point in the Delaunay graph).

5. Results

We have implemented our new point cloud surface definition
in C++. It is easy to implement and can be evaluated very
fast: once the graphs are built, we can evaluatef (x) simply
by finding a nearest neighbor, traversing the graph, comput-
ing a number of weights from the CPSP map, and finally one
eigenvector by Cholesky decomposition.

First of all, Figure 7 shows the performance that can be
achieved using our new surface definition for a reasonable
choice ofh. Although our implementation is not fully opti-
mized, the performance is of the same order as that of the
Euclidean kernel.

Figure 10 illustrates the quality depending on the Eu-
clidean kernel and our new geodesic one, respectively. More-
over, in order to give a numerical hint for the quality, we
determined the root mean square error (RMSE) for the devi-
ation (i.e., distance) of the reconstructed surface from the
original surface. Obviously, our geodesic kernel approxi-
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Figure 7: Average evaluation time of f(x) depending on the
kernel bandwidth h (size of point cloud: >2000 points). The
timings forSIG(P) andDG(P) are nearly identical (there-
fore, we omit one curve). Please note that our implementa-
tion is not yet fully optimized.

mates the surface very well, while the Euclidean kernel pro-
duces several artifacts. Even when the bandwidthh (see
Equation 3) is chosen optimally with respect to the RMSE,
the Euclidean kernel produces severe artifacts (see Fig-
ure 10e).

We also performed experiments to assess the sensitivity of
our surface definition with respect to the kernel bandwidth
h. The plots in Figure 8 (left and center) show for two dif-
ferent example surfaces that our new kernel is less sensitive
towards the choice ofh than the old one: for a large range
of the bandwidth, the RMSE using our new surface defini-
tion is quite low. In contrast, only for a small bandwidth the
Euclidean kernel yields a relatively low RMSE. Note that
in almost every case the RMSE of the Euclidean kernel is
larger than the RMSE of our new kernel. Note further, that
the minimal RMSE of our new definition is clearly smaller
than the minimal RMSE of the old one.
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Figure 9: Original (not reconstructed) surfaces (a,c) from
which the noisy point clouds (b,d) have been generated that
are used for the evaluation in Fig. 8.

It might seem that there are still two parameters in our new
approach, which require fine-tuning:r, the radius for our
modified sphere-of-influence graphr-SIG, and the param-
eterk in our geodesic approximation‖· · ·‖geo(k). However,
numerous measurements for different point clouds showed,
that fork, r ∈ [3. . .6], these two parameters are very robust
and yield very similar results. Figure 8 (right) shows the
RMSE depending on both parameters.

6. Conclusion and Future Work

We have presented a new surface definition that utilizes
proximity graphs, k-d trees, and moving least squares to ap-
proximate geodesic distances.

Overall, our new surface definition yields implicit func-
tions over point clouds, the zero sets of which are much
closer to the original surface than the simple moving least
squares approach. At the same time, our definition can be
evaluated quite fast. In addition, the auxiliary data structures
can be constructed efficiently and incur only little additional
storage.

Of course, our method can be utilized for other variants
of point cloud surfaces as well, such as local polynomial ap-
proximations (which build on top of moving least squares).

In rare cases, our r-SIG tends to have a few more edges

than necessary, which can result in unintentional shortcuts,
e.g, in cavities. Together with our non-Euclidean distance
computation, farther points (according to the true geodesic
distance) could be weighted more than nearer ones. This
should be examined in the future.

Our approach is well-suited for static settings, where the
graphs and the CPSP maps can be precomputed. It would be
desirable to adapt our approach to deformable point clouds
as well.

Finally, we will investigate methods to adjust the kernel
bandwidth automatically and locally by utilizing the prox-
imity graph.
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Figure 10: Root mean square error (RMSE) for a noisy point cloud (left: original surface). (a)DG(P) with edges larger than
second quartile are pruned, (b) 2-SIG(P), (c) Euclidean distance kernel, (d) same with reduced bandwidth h, (e) Euclidean
distance kernel with optimal bandwidth h that yielded the minimum RMSE (notice the inferior surface quality).
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