
The Randomized Sample Tree: A Data Structure for Interac-
tive Walkthroughs in Externally Stored Virtual Environments

Jan Klein∗ Jens Krokowski∗ Matthias Fischer∗ Michael Wand† Rolf Wanka∗

Friedhelm Meyer auf der Heide∗

∗University of Paderborn †University of Tübingen

ABSTRACT
We present a new data structure for rendering highly complex vir-
tual environments of arbitrary topology. The special feature of our
approach is that it allows an interactive navigation in very large
scenes (30 GB/400 million polygons in our benchmark scenes) that
cannot be stored in main memory, but only on a local or remote
hard disk. Furthermore, it allows interactive rendering of substan-
tially more complex scenes by instantiating objects.

For the computation of an approximate image of the scene, a
sampling technique is used. In the preprocessing, a so-called sam-
ple tree is built whose nodes contain randomly selected polygons
from the scene. This tree only uses space that is linear in the num-
ber of polygons. In order to produce an image of the scene, the
tree is traversed and polygons stored in the visited nodes are ren-
dered. During the interactive walkthrough, parts of the sample tree
are loaded from local or remote hard disk.

We implemented our algorithm in a prototypical walkthrough
system. Analysis and experiments show that the quality of our
images is comparable to images computed by the conventional z-
buffer algorithm regardless of the scene topology.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation—Display
Algorithms; I.3.6 [Computer Graphics]: Methodology and Tech-
niques—Graphics data structures and data types; G.3 [Mathemat-
ics of Computing]: Probability and Statistics—Probabilistic algo-
rithms

Keywords
Rendering Systems, Level of Detail Algorithms, Spatial Data Struc-
tures, Point Sample Rendering, Out-Of-Core Rendering, Monte
Carlo Techniques

∗Dept. of Mathematics & Computer Science and Heinz Nixdorf
Institute, University of Paderborn, 33095 Paderborn, Germany.
Email:{janklein, kroko, mafi, wanka, fmadh}@uni-paderborn.de
†University of Tübingen, WSI/GRIS, Sand 14, 72076 Tübingen,
Germany. Email: wand@gris.uni-tuebingen.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’02,November 11–13, 2002, Hong Kong.
Copyright 2002 ACM 1-58113-530-0/02/0011 ...$5.00.

1. INTRODUCTION
Despite the use of advanced graphics hardware, real-time navi-

gation in highly complex virtual environments is still a fundamen-
tal problem in computer graphics because the demands on image
quality and details increase exceptionally fast. There are several
sophisticated algorithms to overcome this problem but scenes of
arbitrary topology that cannot be stored in main memory are still
very difficult to handle.

A very interesting application field for our proposed approach is
navigation in virtual environments consisting of many different de-
tailed objects, e.g., of CAD data that cannot all be stored in main
memory but only on hard disk. E. g., such a navigation would be
very useful in the area of plant layout. On the one hand, one wants
to get an overview of all models by viewing from far away, and on
the other hand one wants to examine single objects very closely.
Therefore, it is desirable to store only the polygons and not to pro-
duce additional data as, e. g., textures or prefiltered points: Then,
the viewer can operate with the original data and images of high
quality can be rendered independently of the scene topology and
the camera position. Furthermore, the polygons of such highly
complex scenes require a lot of hard disk space so that the addi-
tional data could exceed the available capacities. For these require-
ments, an appropriate data structure – the randomized sample tree
– has to be employed with a memory consumption that is linear in
the number of polygons. Our work is motivated by the following
two main requirements:

1. Interactive rendering of complex scenes:We want to achieve
interactive rendering of complex scenes in output-sensitive time,
i.e., the rendering time should be sublinear in the number of poly-
gons. To achieve this, we reduce the scene complexity by only ren-
dering samples of polygons that approximate the scene. Our mea-
surements show that the rendered samples of polygons are small
enough to generate interactive frame rates and large enough to gen-
erate images of a good quality. We assume that the samples of
polygons needed for the computation of one frame can be stored
in main memory. In practice, this is no real restriction because the
samples are very small even for our most complex scenes.

2. Complex scenes stored on hard disk:We focus on navi-
gation through highly complex scenes that cannot be completely
stored in main memory. The number of polygons in a scene should
only be restricted by the size of the hard disk. This is of special
interest for scenes consisting of many different types of models for
which instantiation schemes [32] cannot be used. Generally, stor-
ing the data causes expensive hard disk accesses which have to be
minimized in order to achieve interactive rendering.

We solve this as follows: The samples are computed in the pre-
processing and are stored in a sample tree on hard disk. During
navigation, needed nodes and their polygon data must be loaded.

s a m p l e t r e e

p o l y g o n

q u a d t r e e c e l l

Figure 1: Sample tree for a 2D scene with a quadtree. (This
figure is reproduced in color on page 000.)

To exploit temporal coherence, we use a caching mechanism so
that only very few nodes have to be loaded from one frame to the
next (we assume that the viewpoint does not move over great dis-
tances within a short period of time). Furthermore, the samples that
are stored in the nodes are small so that there is little polygon data
to load from hard disk for each image. In the following, we give a
short overview of further aspects and features of our algorithm.

Network-based rendering:Based on the idea that the local hard
disk is too small to store a highly complex scene, we implemented
our algorithm in a client-server network: The sample tree is stored
on a remote server connected to the client via TCP/IP. During a
walkthrough the client loads parts of the polygon data from the re-
mote hard disk into its main memory and sends them to its graphics
subsystem. In Section 7, we show that for networks with a high
bandwidth, good frame rates can be achieved.

Arbitrary scene topology: The quality of the images computed
by our algorithm is independent of the scene topology and the cam-
era position. Holes or disconnectivities in the models cause no
problems. The input for our algorithm is the polygonal descrip-
tion of the virtual environment, e.g., triangles, normals, material
colors. A typical scene for our approach may consist of many dif-
ferent models (e.g., landscapes with trees, buildings and cars).

Efficiency: We need neither complicated level-of-detail compu-
tation of the polygons nor memory-expensive replacement by tex-
tures or prefiltered points. The space for storing our sample tree is
only linear in the number of polygons: Every polygon is stored ex-
actly once in the tree and in practice – our measurements confirm
this –, the number of nodes is at most the number of alln poly-
gons because every node contains at least one polygon. Therefore,
storing the tree costs onlyO(n) space. This is a great advantage be-
cause our scenes are highly complex and have to be stored on hard
disk. The test results with our prototypical walkthrough system
show that our approach works with scenes consisting of more than
400 million polygons, whereby every polygon is separately stored
on hard disk. Our results show that an approximate image with
640×480 pixels can be computed within 326 msec if the sample
tree is stored on a remote hard disk.

2. OUTLINE OF OUR APPROACH
The sample tree:The rendering algorithm uses a so-called sam-

ple tree which is an octree-like data structure for the spatial organi-
zation [4] of the polygons. In every node a sample of polygons is
stored that approximates the corresponding cell if the viewpoint is
far awayfrom the cell. An exact definition offar awayis given in
Section 4. The leaf nodes store all polygons that were not chosen
for the samples in any ancestor nodes.

Figure 1 demonstrates the idea of our sample tree. In order to
pick a sample for the root node of the sample tree, our tree construc-
tion algorithm chooses polygons from the whole scene depending
on their areas and stores them in the root node. These polygons are

� � � � � � � �

� � 	
 � 	

� 	 � � �
 � �
� � � � � � � � �

� � � �
� � � � � � 	

� � � � �
 �

� � � � � �

� � � � � �
� 	 � �

	 � � � � 	
 � � � � � 	 � � � � �
 � � � � � �
 � � � �

� � � � � �
� 	 � �

� � � �

	 � � � � 	
 � �
� � � � 	
 � � �

� � � � 	 �

� � �

Figure 2: Walkthrough system: client and server connected via
TCP/IP, the polygon data are stored on hard disk.

marked in yellow in our example. They give a good approximation
of the scene if the viewpoint isfar awayfrom the cell; in this case
the viewpoint would lie far outside of the whole scene. In order to
get a sample for the upper left quadtree cell, we randomly choose
polygons from the corresponding cell, the probabilities depending
on their areas (we do not consider polygons that are already stored
in the root node). The chosen polygons, marked in red, lying in
the cell together with the yellow polygons stored in the ancestor
node give a good approximation of the upper left quadtree cell if
the viewpoint isfar awayfrom it.

Rendering of the scene:In order to produce an image of the
scene, the sample tree is traversed by a depth-first search and all
polygons lying in visited nodes are rendered. The traversal stops at
a nodeu if the corresponding cell isfar awayfrom the viewpoint.
Then the distance from the viewpoint to the cell ofu is so large that
the sample stored inu gives a good approximation of the cell. If the
traversal stops at a leaf nodev, all polygons lying in the correspond-
ing cell are rendered. If, in this case, we rendered only a sample
of polygons, the approximation would result in low image quality
because the viewpoint is close to the cell. This kind of traversal is
well-known in the context of LOD systems (e. g., see [18]).

Figure 12 shows how our algorithm works. We zoomed into two
parts of an image of a landscape scene rendered by our method.
One can see that the objects are incomplete and that only samples
of polygons are rendered. Below the two zoomed pictures, the cor-
responding complete parts of the original scene rendered by the
z-buffer algorithm are presented for comparison. Observe that for
nodes lying in the part closer to the viewpoint the tree traversal is
aborted later than for nodes in the part far away. One can see, e. g.,
that more polygons of a house are rendered in the front part than
for houses lying in the other part.

Client-server walkthrough system:For highly complex scenes,
the sample tree can only be stored on a local or remote hard disk
if the scene does not fit into main memory. The walkthrough sys-
tem consists of a rendering workstation (client) and a node man-
ager (server) that handles the sample tree stored on its local disk
(see Figure 2). The rendering algorithm (client) traverses the sam-
ple tree during the walkthrough and sends the polygons stored in
the visited nodes to the graphics subsystem. If a node of the sam-
ple tree is not available in main memory, the rendering workstation
loads it via TCP/IP from the node manager.

We produce images within a very short time because we load
only a few nodes for one frame. Furthermore, the samples of poly-
gons stored in the nodes are very small. This client-server concept
is similar to the concept of a scene manager used in [25].

3. RELATED WORK
Several approaches have been proposed for accelerating the ren-

dering of complex 3D scenes. In the following, we summarize re-
lated work in the area of point sampling, out-of-core rendering and

network-based walkthroughs. Furthermore, we look at the possi-
bility of adapting occlusion culling to our approach.

Point sample rendering: Our rendering technique has the most
in common with point sample rendering. Like these methods, we
draw samples of the scene objects and render them in order to re-
duce time-expensive rendering of all polygons.

In the 1970’s and 1980’s several researchers had already pro-
posed to use points as display primitives [2, 16] because their ren-
dering and rasterization is simple and cheap. Additionally, point
sample rendering is independent of the scene topology in contrast
to mesh-based multi-resolution models. Recently, research has fo-
cused again on point sampling. Grossman and Dally [13] use points
both as rendering and as modelling primitives. QSplat [22] and Sur-
fels [21] apply prefiltering methods to convert graphics primitives
into a uniform point representation. The points are selected from a
LOD-like representation according to their screen projection. This
results in a low rendering time and high image quality.

QSplat [22] works best for large, dense models containing rel-
atively regular, uniformly spaced points. The problems are sharp
corners and subtle curves. A further problem occurs if objects are
viewed very closely and if points are projected to more than one
pixel, it results in blocky images. A solution to overcome this prob-
lem is the interpolation between adjacent points which sometimes
results in artifacts [21]. A further solution for the problem of close
views is given by [1, 27, 31], who use locally adapted sample den-
sities for the rendering of complex geometry. Chen and Nguyen
[3] use triangles and points for the rendering of large mesh models
with the ability of close views.

In contrast, our approach generally uses polygons for rendering.
Points or splats can additionally be used in order to get coarser ap-
proximations and to improve the rendering times. There are some
advantages of mainly using polygons: First of all we produce no
additional data like, e.g., textures so that we have a memory con-
sumption that is linear in the number of polygons. This cannot
always be fulfilled by point-based methods. Moreover, the viewer
can operate with the original polygon data which could be useful
for some applications, for example, in the area of plant layout. An-
other point is that our method is able to render images of high qual-
ity independent of the scene topology and the camera position and
therefore we have no problems with close views.

Wand et al. [31] proposed a technique for randomized point sam-
pling. For each frame they have to choose new sample points by
using hierarchical concatenated distribution lists. In combination
with a caching mechanism they are able to render complex scenes at
interactive frame rates. But their technique can only handle scenes
which can be completely stored in main memory. Furthermore,
their method produces images of bad quality if some polygons are
parallel and lie close to each other. Our proposed approach over-
comes these two drawbacks: In Section 4 we prove that images of
good quality are produced by our algorithm whereby no assump-
tion about the position of the polygons is made. The other problem
– the limitation to main memory – is solved by our sample tree: We
have developed a sampling technique that can be done in the pre-
processing whereby the polygons can easily be stored on hard disk.
Because we do not use any distribution lists like Wand et al. [31],
where expensive dynamic updates have to be done for each frame,
our randomized sampling method saves enough time that can be
used for the data transfer from hard disk. So in contrast to Wand et
al. we are able to handle scenes consisting of many different mod-
els that cannot all be stored in main memory but only on hard disk.
Note that although we sample only once in the preprocessing in-
stead for each frame we can prove that our images are always of
good quality.

Out-of-core rendering: Recently, Lindstrom and Pascucci [17]
present a framework for out-of-core visualization of terrain sur-
faces. Their results show that this approach works well with large
terrain meshes consisting of about 5 GB polygon data but it does
not really fit to scenes of arbitrary topology as our approach does.
The system presented by Sobierajski Avila and Schroeder [26] al-
lows an interactive navigation through large polygonal environ-
ments produced by CAD systems. Thereby, they combine view
frustum culling and LOD modelling. In comparison, our method
does not use a limited number of different LOD representations but
every polygon is only stored once in the sample tree. Furthermore,
our approach adjusts the approximation quality within a single ob-
ject during the navigation. So we can achieve a smooth navigation
without the effect of toggling between different LOD representa-
tions.

Wald et al. [30, 29] propose distributed ray tracing as a tech-
nique for interactive rendering. In [29] it is shown that they are
able to generate very high quality images of scenes consisting of
50 million polygons stored on hard disk. They achieve interactive
frame rates by using seven dual Pentium PCs. It is obvious that ray
tracing produces images of higher quality than conventional ren-
dering methods but generally ray tracing has a worse performance
than rasterization algorithms.

Network-based walkthroughs: Transmitting 3D data across a
network has become an interesting field of research. As our ap-
proach allows not only rendering of highly complex scenes stored
on a local hard disk but also stored on a remote hard disk, we survey
shortly related work in the area of network-based rendering.

In the context of occlusion-culling, the PVS approach presented
by Teller and Śequin [28] is suitable for a client-server system.
Thereby, the server computes the PVS (Potentially Visible Sets)
and sends them to the client to avoid the transmission of invisible
geometry [10, 11].

In order to use the network capacity consistently despite of sharply
changing viewpoints, Cohen-Or and Zadicario [6] propose a prefetch-
ing of anε-neighborhood to ensure that off-screen objects are loaded
into memory. Mann and Cohen-Or [19] present another system of
collaborating client and server. They assume that web-based virtual
environments are dominated by huge amounts of texture data which
are stored on the server, while the models are locally available at
the client. The network requirements are reduced by sending only
the difference image needed for the current view.

Schmalstieg and Gervautz [24] employ the notion of “Area Of
Interest” (AOI) in the context of multi-user distributed virtual envi-
ronments where AOI is a circular area around the viewpoint. Only
the objects in this area are sent from the server and stored in main
memory of the client in order to reduce the network transmission.
In contrast to their approach, we also render objects that are far-off
so that we do not have the effect of objects popping into an image.

Streaming transmission of data sets has become interesting be-
cause of growing network speed. Sophisticated algorithms trans-
mit low-resolution data first, so the user sees a coarse approxima-
tion and can interact with the scene. Then, a progressive stream of
high-resolution data improves the quality. There are some polygon-
based approaches that are suitable for this kind of multi-resolution
rendering: Hoppe’s progressive mesh approach [15] represents a
model by a base mesh and refinements to this mesh. The mesh cor-
rection can take place by vertex split operations [15] or by wavelet
encoded operations [8].

Rusinkiewicz and Levoy [23] employ a multi-resolution point
rendering system for the streaming of large scenes. A splat-based
bounding box hierarchy is used for a view-dependent progressive
transmission of data across a network of limited bandwidth.

Occlusion culling: In the last few years many occlusion culling
algorithms have been developed, see the survey of Cohen-Or et
al. [5] for a detailed overview. We have not focused on any oc-
clusion culling yet, because point sample rendering and occlusion
culling are two orthogonal problems. We only perform view frus-
tum culling and backface culling. The running time of our approach
depends linearly on the projected areaa of ssampled polygons, in-
cluding hidden polygons. Since we use the z-buffer algorithms for
rendering the sampled polygons, the running time isO(s+a) [14].
Thus, our algorithm becomes inefficient if there are many polygons
near to the viewer because these polygons have a great projected
area. But we think, our sample tree fits well to known occlusion
culling algorithms [9, 12] because the polygons are managed in a
spatial and hierarchical way that can be used for the visibility tests.

4. THE RANDOMIZED SAMPLE TREE
In this section, we describe the idea and the structure of the sam-

ple tree and how an image of the scene is rendered. Furthermore,
we show how the samples of polygons have to be chosen so that,
with arbitrarily high probability, a correct image is produced. In
the last two subsections, we describe extensions of our algorithm
to improve the image quality and to accelerate the rendering time.

In order to explain the main idea of our sample tree, we need the
notion ofcorrect image.

Correct image: A part of an image with size≤ 1 pixel is called
correct if at least one visible polygonr from this part is rendered.
The whole image is correct if all of its parts are correct. A discus-
sion of this definition follows at the end of section 4.3.

A correct imagemay still show aliasing and noise artifacts. Wand
et al. [31] deal with these problems by averaging over several inde-
pendent renderings resulting in a slow rendering time. This tech-
nique is not possible in our case as we employ fixed, precomputed
sample sets. However, the same effect can be achieved by super-
sampling, i.e., rendering the image at a higher resolution and sam-
pling density and then downsampling the image.

4.1 The Data Structure
In the following, we explain the hierarchical structure of our

sample tree, which corresponds to a modified octree, and the in-
sertion of the polygons into its nodes.

The octree cell of a nodeu is calledB(u). Let A(r) denote the
area of the polygonr. Furthermore, letP(u) denote all polygons
of a scene lying inB(u) and letA(P(u)) denote the sum of all ar-
eas of polygons fromP(u), i.e.,A(P(u)) = ∑r∈P(u) A(r). The idea
of our sample tree is that in every inner nodeu, a sample of the
polygonsP(u) is stored. We store sufficiently many polygons in a
nodeu, so that these polygons, together with the polygons stored
in the ancestor nodes ofu, approximate well P(u) if the viewpoint
is far away from B(u). Approximate wellmeans that the projec-
tion of the polygons produces a correct part of the image with high
probability p. The probabilityp depends on the sample sizemu,
that, in turn, depends onA(P(u)). For details, see Section 4.3. To
pick a sample stored in a nodeu we look at all polygonsP(u) and
add a polygonr to the sample set with a probability proportional
to its area, i.e., with probabilityA(r)/A(P(u)), because on average
larger polygons contribute more to an image than smaller ones.Far
awaymeans that the projected bounding box ofB(u) is at most one
pixel. So, in every inner nodeu, a sample of polygons is stored
that approximatesP(u). A leaf nodev contains all polygons from
P(v) except those polygons that are already stored in any direct or
indirect ancestor node ofv. Analogously, a polygon is not stored
in any inner nodeu if it is already stored in an ancestor node ofu.
That means that every polygon is stored exactly once in the tree.

Figure 3 presents the algorithm that computes a sample tree. Be-
fore starting it, an octree has to be constructed where polygons are
inserted in leaf nodes or recursively in the ancestor nodes if they
do not fit completely into a bounding sphere of a leaf node. The
algorithm has to be started with the root node of the octree. The
sample sizemu can be computed from Theorem 1 (Section 4.3).

One has to consider that many other very small polygons would
be inserted into high-level nodes (nodes near to the root node), if
they lie on edges of any octree cells. As a consequence, these poly-
gons would be rendered for nearly every image. To avoid this be-
havior, the algorithm can easily be modified: Instead of choosing
polygons fromP(u) we choose them from all polygons lying in the
bounding sphere ofB(u).

createSample (nodeu)

if u is not a leaf node
for every childd of u do createSample (d)
M = /0
computemu
for i = 1 tomu do

choose polygonr from P(u) with probability
A(r)/A(P(u))

store the chosen polygon in setM
remove the polygon from any child node ofu

store all polygons fromM in nodeu

Figure 3: The algorithm constructs a sample tree in bottom-up
manner. Its input is the root of a precomputed octree.

4.2 Rendering an Image
In order to render an image, the sample tree is traversed by a

depth-first search and all polygons stored in visited nodes are ren-
dered. The traversal is stopped at a nodeu if the projected bounding
box ofB(u) is at most one pixel. Then the polygons stored inu are
rendered and produce a correct part of the image with arbitrarily
high probability that depends on the sample sizemu. If the traver-
sal is not aborted, the search ends at a leaf nodev. Consequently,
all polygons of the scene lying inB(v) are rendered.

Note that all polygons stored in visited nodes have to be ren-
dered. It is not sufficient to render only polygons stored in nodes
where the traversal stops sinceP(u) is only approximated by the
polygons inu and the ancestor nodes together.

Our method renders all polygons having a projected area of more
than one pixel because the traversal stops at a nodeu if its projec-
tion is at most one pixel, and polygons that do not fit completely
into the bounding sphere ofB(u) are stored in ancestor nodes.

4.3 Sample Size
In this section, we explain how many polygons have to be cho-

sen for each sample. Furthermore, we prove that enough polygons
are stored in every node to produce correct images with arbitrarily
high probability. We choose polygons randomly with a probability
proportional to their areas. That means we add a polygonr to the
sample with probabilityA(r)/A(P(u)) because on average larger
polygons contribute more to an image than smaller ones. It is ob-
vious that the larger the sum of all polygon areas in a cell is, the
larger the sample should be in order to compute a correct image.
It is important to properly estimate the size of the sample, as too
many polygons result in slow rendering and too few polygons re-
sult in a low image quality. Therefore, Theorem 1 shows how many
polygons have to be stored in a nodeu.

Theorem 1 (Sample size):Let A(P(u)) denote the sum of all ar-
eas of polygons fromP(u), and letA(B(u)) denote the area of one
side face of the bounding box ofB(u). The factorqu is defined
as qu = dA(P(u))/A(B(u))e. Let c be an arbitrary constant. If
mu = qu · lnqu + c · qu independent drawings fromP(u) are done
and the chosen polygons are stored in the nodeu, then with prob-
ability p≈ e−e−c

their projection gives a correct part in the image
for an arbitrary viewpoint if the projection ofB(u) is at most one
pixel and if the area of the projected polygons fromP(u) shows no
holes from any viewpoint.

Proof: We have to guarantee with probabilityp that from an ar-
bitrary viewpoint, there is always a visible polygon in the sample
stored in the nodeu. Then, as the projection ofB(u) is at most one
pixel and as we render a visible polygon with probabilityp, the cor-
responding part of the image is correct (with probabilityp). Note
that the following described operations neither have to be done dur-
ing the preprocessing phase nor during the navigation. They are
only used for proving the theorem.

Let Vu denote the viewing ray through the center ofB(u). We
consider an arbitrary, but fixed viewpoint in the scene so that the
projection ofB(u) is at most one pixel. Letfmax be the maximum
area of a surface that is orthogonal to the viewing rayVu and that
completely lies inB(u) (see Figure 4 (a)). The minimal sum of the
area of all visible polygons fromP(u) amounts tofmax because we
assume that from any viewpoint the area of the projected polygons
from B(u) shows no holes. If some visible polygons are not orthog-
onal to the viewing rayVu, the area of all visible polygons or parts
of polygons will be greater thanfmax.

For the sake of argument, let us partition the polygons fromP(u)
into q̃u groups so that all polygons of each group (except the last
one) have a total area offmax. For this, polygons might have to
be subdivided and to be put into two groups.q̃u can be computed
as q̃u = dA(P(u))/ fmaxe. All visible polygons or parts of visible
polygons lying inB(u) are put into one group. They fill at least
one group because they have a minimum area offmax as described
above.

Now the question is how many polygonsmu have to be cho-
sen in such a way that with probabilityp from each group at least
one polygon is taken. By choosing at least one polygon from each
group, you would have chosen at least one polygon from the group
of the visible ones. Consequently, ifmu polygons are stored inu,
a visible polygon fromP(u) is between thesemu polygons, seen
from an arbitrary but fixed viewpoint. When allmu polygons are
rendered, the visible polygon is rendered too. AsB(u) is at most
one pixel, the corresponding part of the image is correct.

The question raised above can be answered with the help of the
reduction to a simple urn model: Givenabins, how many balls have
to be thrown randomly and independently with the same probability
into the bins so that every bin gets at least one ball? The number
a of the bins corresponds to the numberq̃u of the groups and the
number of balls corresponds to the number of necessary drawings
of polygons. LetX denote the number of drawings required to
put at least one ball into each bin. It is well known (e.g., see [20,
p. 57f]) that the expectation value ofX is q̃u ·Hq̃u

whereHq̃u
is the

q̃u-th harmonic number.
Let c be an arbitrary constant. Thẽqu-th harmonic number is

about lnq̃u ±1 which is asymptotically sharp, and soc · q̃u addi-
tional balls are enough to fill each bin with probabilityp which
depends onc. Consequently,mu = q̃u · ln q̃u +c · q̃u polygons from
P(u) have to be chosen and stored inu. To compute the depen-
dence ofp on c, we refer to the proof in the textbook of Motwani
and Raghavan [20, p. 61ff]. They showed that the probabilityp of
X ≤ mu is equal top = e−e−c

for a sufficient large number of bins.

Until now we considered an arbitrary, but fixed viewpoint so that
the projection ofB(u) is at most one pixel. The size of the sample
depends oñqu andq̃u depends on the viewpoint: If the viewpoint
is chosen so thatfmax is minimal, q̃u — the ratio ofA(P(u)) and
fmax — is maximal. It is obvious that the minimal size offmax
corresponds to the area of a side faces of the bounding box of
B(u). Then the viewpoint is chosen so that the viewing rayVu is
orthogonal to the side faces(see Figure 4 (b)). All other viewpoints
result in a greater areafmax. So q̃u is maximal and equal toqu
if fmax is equal toA(B(u)). Therefore, the maximal number of
polygons which have to be chosen fromP(u) and stored in the node
u can be estimated bymu = qu · lnqu +c·qu.

fmax

B(u)

fmax

B(u)

(a) (b)

Vu

Vu

Figure 4: (a) The grey surface is orthogonal to the viewing
ray Vu. This surface with an area of fmax lies completely in
B(u). (b) If the viewing ray Vu is orthogonal to a side face of
B(u) then fmax will be minimal.

Corollary 1 (Correctness of an image):Let c be an arbitrary con-
stant and letj denote the number of nodes where the traversal did
not continue to child nodes. The sample size in every nodeu is
chosen so that with probabilityp≈ e−e−c

the polygons of the sam-
ple produce a correct part of the image. Then the probability of a
correct image isp j .
Proof: We produce a correct image of the scene with probabilityp j

because for allj nodes where the traversal stops, the corresponding
area of the image is correct with arbitrarily high probabilityp. All
other areas in the image are correct anyway because all polygons
in these areas are rendered.

In practice, it is no problem to choose a sample size so thatp
is always greater than 1−10−6. Therefore,c≈ − ln10−6 ≈ 13.8
has to be set. If the factorj is about 104, this is a realistic value in
practice, and if we storemu = qu · lnqu+13.8·qu polygons in every
nodeu, we generate a correct image with probabilityp j > 0.99.

Remark: The definition of a correct image differs from Wand et
al. [31] in that it has not to be guaranteed that always one of the
selected visible polygons is nearer to the viewpoint than all se-
lected invisible polygons. E. g., errors can occur due to situations
as shown in Figure 5. We assume that only polygonsA andC are
selected for rendering. Thus the pixel gets the color of the invisible
polygonC instead of the color of the selected visible polygonA. In
our experiments we observe only few errors at object boundaries.

B (u)A
C
B

v i e w i n g
r a y

Figure 5: The octree cell contains vis-
ible polygonsA and B. Polygon C is
occluded byB. B is nearest andA is
farthest w.r.t. the viewpoint.

4.4 Precomputation of Color Values
To summarize, one can say our method renders all polygons hav-

ing a projected area of more than one pixel and renders only a repre-
sentative sample of polygons for smaller ones. The traversal stops

Figure 6: The Happy Buddha rendered by the z-buffer algo-
rithm (leftmost) and by our approach with different splat sizes:
From left to right: splat size 1, 3 and 5. (This figure is repro-
duced in color on page 000.)

at a nodeu if its projected cellB(u) is at most one pixel. All poly-
gons in such a nodeu are projected onto an area of the image with
a size of at most one pixel and cover only parts of a small neighbor-
hood of pixels. Which color value is attached to the pixel eventually
depends on the depth of the z-buffer, the sequence of the projected
polygons and the graphics library that is used. In order to improve
this procedure with the aim to get a better color value for the pixel,
a color value that is representative for all polygons stored in a node
u can be determined. This color value is rendered with the size of
one pixel instead of the corresponding polygons, if the projected
bounding box ofB(u) is at most one pixel. In our implementation
the color value is determined as the median of all polygon colors
depending on the polygon areas. It is also conceivable to calcu-
late a better color value by using Gaussian filters and considering
adjacent color values.

4.5 Far-Off-Splatting
In the context of point sample algorithms the notion of splat-

ting has become popular in the last few years. Instead of render-
ing points or single pixels many approaches render splats in order
to reduce rendering time and to guarantee that the images show
no holes. Based on this idea we developed the far-off-splatting.
Thereby, objects far-off are mainly represented by splats and only
the larger polygons are rendered for these objects. For objects near
to the viewer it is the other way round: Generally, polygons are
used for drawing them and splats are only used sparsely so that the
image quality of these objects is good. With this technique the ren-
dering times can be improved while the images are of good quality.

Specifically the far-off-splatting works as follows: Instead of
traversing the tree until the projected bounding box of a node is
at most one pixel, the traversal can be stopped earlier at a nodeu, if
its projected bounding box is at mosti2 pixels,i ∈ {1,2,3, . . .}. For
such a nodeu, a color value computed in the preprocessing is ren-
dered as a splat of sizei2 pixels instead of the polygons stored inu.
We denotei as the splat size. Thereby, we ensure that there are no
holes in the rendered images. Note that the projection of bounding
boxes near to the viewer is mostly larger thani2 pixels (for smalli)
so that the corresponding polygons are rendered and a high image
quality can be achieved.

5. EXTERNAL CONSTRUCTION OF THE
SAMPLE TREE

If the scenes are highly complex and cannot be completely stored
in main memory, the sample tree cannot be constructed in an easy
top-down manner. The problem is that foreverynodeu one has
to draw a polygonmu times fromall polygonsP(u). This cannot
be done within an acceptable amount of time in the preprocessing

Figure 7: SceneLandscape 2(more than 2 billion polygons)
rendered with different splat sizes in comparison to the z-buffer
algorithm (upper left). Upper right: splat size 1, lower left:
splat size 3, lower right: splat size 5. (This figure is reproduced
in color on page 000.)

phase because only a small part of polygons can be stored in main
memory. Many hard disk accesses would be necessary.

To overcome this problem we construct the sample tree in a
bottom-up manner that differs a little from the algorithm described
in Section 4.1 (see Figure 3). For this purpose, we have to construct
an octree from which afterwards our sample tree is built and stored
on hard disk. The octree has to be precomputed because we have
to know which polygons lie in each leaf node of the sample tree at
the beginning of its construction.

5.1 Octree Construction
One problem to be solved is that one cannot store every node of

the octree or of the sample tree in a single file. During the construc-
tion, as well as during the walkthrough, too many files would have
to be opened and closed which would result in a long preprocessing
time or in a high response time of the node server. Another prob-
lem to overcome is how to store all nodes with their polygon data.
This cannot be done in a single file because its size is restricted by
most operating systems. Furthermore, it is important to store nodes
of neighboring cells in a single file because often these nodes are
requested immediately one after another.

Because of these problems, an octree with a fixed depth is first
constructed in two steps. The final depth – by which it can be
guaranteed that every leaf node does not store more than a fixed
number of polygons – cannot be determined in advance because
of the unknown spatial distribution of the polygons. In the first
step, the structure of the octree is determined and for every node,
the number of polygons lying in the corresponding octree cell is
counted. With this information we can identify the nodes (with
their polygon data) which should be stored together. In the second
step the polygons are stored in the file of the corresponding node.
After this construction, leaf nodes are subdivided into subnodes if
they contain more than a fixed number of polygons.

5.2 Sample Tree Construction
In the following, we construct a sample tree for a nodeu, that

differs a little from the definition in Section 4, but still satisfies the
desired sample tree property. We have to modify the bottom-up
construction (see Figure 3) because we have to achieve that as few
polygons as possible are loaded from hard disk into main memory

Figure 8: Happy Buddha (instantiation):
More than 10,000,000,000 polygons are ren-
dered in 380 msec (splat size 2). (This figure
is reproduced in color on page 000.)

Scene polygons preprocessing polygons per node disk usage
(max/avg) (total / polygon data)

Landscape 1 (LS 1) 642,847 52sec 529/11 54.7MB/46.6MB
Landscape 2 (inst. of LS 1) 2.01 billion (52sec) (529/11) (54.7MB/46.6MB)
Landscape 3 (out-of-core) 406,149,559 30.5h 584/21 29.68GB/28.58GB
Happy Buddha (single) 1,087,474 86sec 38/3 102.8MB/78.8MB
Happy Buddha (inst.) 10.87 billion (86sec) (38/3) (102.8MB/78.8MB)
Chessboard (small) 80,000 7sec 35/8 6.97MB/5.80MB
Chessboard (huge) 320,000,000 23.3h 47/10 24.44GB/22.65GB

Figure 9: Statistical overview of the sample trees for different scenes.Preprocessing
denotes the time for constructing the sample tree.The total disk usageincludes the
polygon data and the additional data for storing the sample tree. By instantiating
objects, neither the preprocessing time nor the sample tree structure is changed (the
corresponding values are in parentheses).

to reduce expensive hard disk accesses. So the sample tree can be
built up in an acceptable preprocessing time.

The sample tree is constructed bottom-up from the octree. Let
the subtrees of any nodeu be sample trees. The child nodesdi ,
for i = 1. . .8, store exactly the polygons that give a good approxi-
mation ofB(di) if the projected size ofB(di) is at most one pixel.
Therefore, it is sufficient to sample only from polygons that are
stored in the direct child nodesdi , and store the sampled polygons
in u. Of course, one has to remove the chosen polygons from the
child nodes. This construction has the effect that polygons stored
in the leaf nodes of the octree are shifted up successively.

6. NAVIGATION IN EXTERNALLY
STORED SCENES

To allow an interactive navigation in scenes stored on hard disk,
the following requirements have to be considered: 1. To compute a
new image, only a few nodes should be loaded. 2. Loading a node
may take only very short time. An appropriate algorithm is de-
scribed in this section. Thereby, we assume that the viewer moves
only slightly between the computation of two sucessive frames.
Also, we assume that the polygon samples needed for the com-
putation of one frame can be stored in main memory. In practice,
this is not a restriction because the samples are very small even for
our most complex scenes.

6.1 Client-Server Model
In order to store scenes on hard disk and to load data during

navigation, we have implemented a client-server structure (see Fig-
ure 2). The sample tree is stored on the hard disk of the server and
is managed by the node manager. The client is connected to the
server via TCP/IP and serves as a rendering workstation.

The traversal of the sample tree and the rendering of polygons
are executed on the client. At the beginning, there is no sample tree
on the client so that the client sends a request to our node manager
with the unique node identifier of the root node. The received root
node is stored in main memory. While the traversal has not stopped
at a nodeu, and the required child node is not stored in main mem-
ory, the client sends requests to the server and stores the received
nodes in memory. Of course, one cannot manage all nodes in main
memory at the same time. For this, we developed a caching mech-
anism which deletes nodes in main memory but keeps nodes that
are needed for the next frames.

6.2 Caching and Deleting Nodes
We use a very simple but efficient method for caching nodes: If

the traversal stops at a nodeu stored in thek-th level of the sample
tree, all child nodes of the nextj levels are kept in main memory.
j is arbitrary but fixed and measurements show thatj ∈ {1,2} pro-
vides the best results. All nodes of the next levels having a depth of

more thank+ j are deleted from memory. This method can be im-
proved by implementing the data transfer of the nodes via TCP/IP
and the rendering and the traversal in the sample tree to be asyn-
chronous. That means if a request is sent to the server, the traversal
is not stopped until the requested node is transferred. The traversal
and rendering of the polygons are executed simultaneously with
the data transfer. The measurements in section 7 show that with
this caching mechanism, only very few nodes have to be loaded
from one frame to the next. Additionally, only small samples of
polygons are stored in the nodes, resulting in a low data transfer.

7. IMPLEMENTATION AND RESULTS
We implemented our proposed approach in a prototypical walk-

through system. Our C++ code has not been optimized. The pre-
computed octree has to be kept on hard disk during the sample tree
construction. So we need double memory capacity which means
that for computing the sample tree of our largest scene (30 GB) we
need 60 GB on hard disk. All tests were performed on a Linux-
based system with a 2GHz Pentium 4 using 1GB of main memory,
nVIDIA GeForce3 graphics card and a 80 GB IDE hard disk. For
all benchmarks we chose a resolution of 640×480 pixels.

In order to show the characteristics and advantages of our method,
we modelled some scenes which will be described in detail later.
The scenes are different with respect to the scene complexity, the
complexity of each 3D model, the dimension and the structure of
the scene. In every benchmark in this section, another aspect of our
approach is examined. The aim is to show that the idea of draw-
ing the samples during the preprocessing and of loading them from
hard disk during the navigation allows an interactive walkthrough
as described in the introduction. Additionally, it is demonstrated
that the precomputation of the samples in a preprocessing phase
does not lead to a poor quality in comparison to other methods as,
e. g., the approach proposed by Wand et al. [31]. In order to get
a first overview of the scenes and the corresponding sample trees
one should look at the table shown in Figure 9. There, one can also
see the necessary preprocessing times for constructing the sample
trees.

7.1 Image Quality
The theoretical analysis concerning the image quality that is given

in Section 4 should now be verified in practice. Figures 6 and 7
compare the quality of images computed by our method with an
image computed by the z-buffer algorithm, depending on different
splat sizes (see Section 4.5).

First, we examine the quality of the sceneLandscape 2(more
than 2 billion polygons), where many objects are far-off in the dis-
tance. In Figure 7 the upper left picture is rendered by the z-buffer
algorithm. In comparison, the upper right picture rendered by our
approach (splat size 1) is of the same quality. In the two pictures

0 200 400 600 800

frame number

50000

100000

150000

200000
sp

la
ts

 /
po

ly
go

ns
polygons
splats
rendering time

0 200 400 600 800
0

500

1000

1500

2000

tim
e

[m
se

c]

0 200 400 600 800
frame number

0

100

200

300

400

500

600

700

tim
e

[m
se

c]

0 200 400 600 800
0

100

200

300

400

500

600

700

lo
ad

ed
 n

od
es

rendering time
loaded nodes

0 50 100 150

frame number

0

500

1000

tim
e

[m
se

c]

total time (local)
total time (remote)
traversal & display time

Figure 10: Measurements forLandscape 2. Left: Number of rendered polygons and splats. Center: Number of nodes to be loaded
during the navigation. Right: Rendering time for storing the scene on a local and remote hard disk. The total time includes the
communication between server and client.

1×105 1×106 1×107 1×108

scene complexity (number of polygons)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

re
nd

er
in

g
tim

e
[m

se
c]

splat size 2
splat size 4
splat size 8

Figure 11: Rendering time for chessboard scenes depending on
the scene complexity and the splat size. The time grows roughly
logarithmically with the polygon number. Note that the x-axis
is logarithmically scaled.

below (left: splat size 3, right: splat size 5) the quality is a little bit
worse, as one can see some wrong pixels. In contrast to this land-
scape scene, Figure 6 shows the happy buddha model [7] (scene
Happy Buddha (single)) which is quite complex and consists of
more than one million polygons. These polygons are lying in a
very small volume and – compared to the landscape scene – many
polygons are very close to the viewer. This model is used by other
researchers so that a comparison is easily possible (we have taken
the frequently used resolution of 640×480 pixels). Note that even
for splat size 5 the image quality is remarkably good.

7.2 Complexity of Scenes
In this section we explain why the rendering time depends sub-

linearly on the polygon number. We chose chessboard models (con-
sisting of black and white polygons) with fixed dimensions but in-
creasing number of polygons from 80,000 (Chessboard (small))
to maximal 320 million (Chessboard (huge)) as our benchmark.
Thereby, constant conditions concerning the projected area, the
illumination and other geometric parameters can be guaranteed.
Note that every polygon is stored separately on a remote hard disk.
The viewer moves over the chessboard at a very low altitude so that
many polygons are close to the viewer and nearly all polygons of
the scene lie in the view frustum. If the viewer were farther away,
computing an image would take shorter time since the traversal in
the sample tree would be stopped earlier.

In Figure 11 one can see that the rendering time is sublinear in
the number of polygons: The computation of an image for a scene
consisting of 8 million polygons amounts to 284 msec, whereby the

rendering of a scene consisting of 320 million polygons takes about
324 msec per image (splat size 4). These values are averaged over
a path consisting of 100 steps. For a splat size of 8, an interactive
navigation in the most complex scene (320 million polygons) is
possible with about 4 fps. Thereby, the image quality is quite good
and the quality of the area close to the viewer is almost equal to that
of images computed by the z-buffer algorithm.

7.3 Out-Of-Core Storage
We want to show that our developed data structure – the ran-

domized sample tree – is very well suited to render scenes that
cannot completely be stored in main memory. Therefore we con-
sider our largest sceneLandscape 3consisting of more than 400
million polygons (30 GB). The organization and the design of the
3D scene objects are comparable to those shown in Figure 7. The
viewer moves in 800 steps over the scene at a low altitude whereby
the way is not only straight on: So, on the one hand most of the
polygons near to the viewer have to be rendered, and by changing
the viewing direction more new nodes have to be loaded.

Of course, the rendering times are very interesting but one has
to take into account that they depend highly on code optimization
and the system used. Therefore, we also show how many nodes
and polygons are loaded from hard disk and we look at the size
of rendered polygons and splats. First of all one should examine
the table shown in Figure 9. There, one can see that the average
number of polygons per node as well as the maximum number is
small for all scenes. Moreover, we only load a few nodes from hard
disk during the navigation as one can see in Figure 10 (center): On
average, no more than 100 nodes are loaded per frame. In the same
figure the rendering times are shown whereby the average time for
rendering an image takes 326 msec (splat size 5).

The Figure 10 (left) depicts the number of polygons and splats
that have to be rendered on the chosen path through our scene. As
one can see, the ratio between the polygons and splats is roughly
the same on the whole path. About 157,000 polygons and about
70,000 splats are drawn for each frame on average, and always
twice as many polygons are rendered than splats. Clearly, the ratio
is roughly the same: For complex objects the sample tree is deeper
than for less complex objects. So, if the viewer moves to a complex
object, the sample tree is traversed deeper and more polygons are
rendered. Furthermore, there are more nodes where the traversal is
stopped and for which splats have to be drawn.

To summarize, one can say that only few nodes with few poly-
gons have to be loaded for each frame resulting in a low transfer
time. The transfer time that depends on storing the sample tree on
a local or remote hard disk is examined in the next section.

7.4 Local versus Remote Rendering
Now we compare the rendering times for our largest sceneLand-

scape 3(400 million polygons, 30 GB) depending on whether the
sample tree is stored on a remote disk or whether it is stored on
a local hard disk. See Figure 10 (right). We chose a splat size
of 5 in order to get good quality images. A path through the scene
was fixed so that as many polygons as possible are in the viewing
cone. Furthermore, we violated our assumption that the viewpoint
does not move over great distances within a short period of time:
thus, many nodes had to be loaded from hard disk for each frame.
This makes sense since we want to examine the time for loading
the polygons and not the rendering time for a smooth walkthrough.
The time for the traversal of our sample tree plus the display time
(time used to send the polygons to the graphics card) amounts to
300 msec in the average case, regardless of storing the scene on a
local or remote hard disk. If the scene is stored on local hard disk,
the total time for the computation of an image amounts to 570 msec
in the average case. The difference between these two time values
is the communication time between client and server.

If the same scene is stored on a remote hard disk that is con-
nected to the client by a fast network (100 MBit), the total time
only amounts to 470 msec in the average case. This can be ex-
plained by the fact that if client and server run on the same system,
they compete with each other for computing time and main mem-
ory. Furthermore, if the server runs on a remote system it can store
more files in its cache.

It is obvious that rendering the first image takes longer than ren-
dering an image during the navigation: At the beginning no poly-
gons are stored in main memory and therefore all needed polygons
have to be loaded from hard disk. Our measurements show that 36
seconds are necessary for the first image of our largest scene.

7.5 Instantiation of Objects
Our approach requires no instantiation schemes for managing

highly complex scenes. Every polygon is stored separately on hard
disk. Nevertheless, we have implemented the ability to instantiate
objects in order to show the power of our method applied to scenes
that exceed our hard disk capacities.

Figure 7 shows an instantiated scene (Landscape 2) consisting of
more than 2 billion polygons that can completely be stored in main
memory. The z-buffer algorithm needs about 50 minutes for the
computation of one image while our algorithm (splat size 1) needs
only 2.5 sec for an image of the same quality. With a splat size of
2, the rendering time amounts to 960 msec and with splat size 5
rendering takes 269 msec for images of acceptable quality which
means we have a frame rate of more than 3.7 fps. The rendering
times are average values for a path of 1000 steps through the scene.
During the navigation camera positions are chosen very close to
some objects as well as far-off positions with nearly all polygons in
the view frustum. For splat size 2 we render about 301,750 poly-
gons and 110,400 splats, and for splat size 5 we have about 87,860
polygons and 32,110 splats per image.

To show that our approach also works with scenes consisting
of many very complex and smooth models we created the scene
Happy Buddha (instantiation)with 10,000 instances of a single
happy buddha model (more than 1010 polygons, see Figure 8). We
chose a path through the scene of the same kind as described above.
With a splat size 2, images can be computed within 334 msec and
with splat size 4, frame rates of about 5.9 fps can be achieved on
average. Thereby, about 40,130 polygons and 15,330 splats are ren-
dered per image, whereby with splat size 2 about 65,900 polygons
and 65,230 splats are drawn.

8. CONCLUSION AND FUTURE WORK
We developed a method that allows an interactive walkthrough

in virtual environments of arbitrary topology that cannot be stored
in main memory, but rather on hard disk. Our experiments illus-
trate that the running time of our algorithm depends only weakly
on the number of polygons and show that our approach is suitable
for highly complex scenes. In contrast to recent point sample ap-
proaches, our memory consumption is only linear in the number
of polygons. Our method computes the samples in a preprocessing
phase so that no expensive computations are necessary as in [31]
in order to specify the samples during the navigation. Furthermore,
our randomized sample tree requires loading only a small amount
of polygon data from hard disk if the viewpoint moves only slightly
between the computation of two sucessive frames. This means that
acceptable rendering times can be achieved. We also showed that
with arbitrarily high probability, correct images can be computed.

There are some possibilities to extend our work and to further
improve the rendering time.

Anti-aliasing: Our precomputation of color values (see Sec-
tion 4.4) is only a very simple method for avoiding aliasing arti-
facts. By using Gaussian filters during the precomputation, one
would probably get better anti-aliased images. It is also possible
to use randomized visibility tests during the walkthrough for better
anti-aliasing.

Occlusion culling: As the running time of our method is lin-
ear in the projected area of polygons, it is desirable to implement
an occlusion-culling algorithm. Well-known algorithms should fit
very well to our sample tree as described in Section 3. It is also
conceivable to use randomization for the visibility tests.

Dynamic updates: Dynamic updates of scenes could be very
useful for some applications. Therefore, the sample tree has to be
modified during the navigation for inserting, moving or deleting
single objects.

Network-based rendering:Our method allows interactive nav-
igation in highly complex scenes stored on a remote hard disk only
on high bandwidth networks. Integrating the possibility of ad-
justing the approximation quality to the bandwidth of the network
might be a good idea.

Acknowledgements
The authors wish to thank Birgitta Derenthal for valuable discus-
sion and her support of our work. Thanks also to José Luis de los
Rios, Marcus Werner, and Eric Torunski for modelling the scenes.
This work is partially supported by DFG grant ME 872/8-1 and the
Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).

9. REFERENCES
[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and

C. T. Silva. Point set surfaces. InProc. IEEE Visualization
2001, pages 21–28, 2001.

[2] E. Catmull.A Subdivision Algorithm for Computer Display of
Curved Surfaces. PhD thesis, University of Utah, 1974.

[3] B. Chen and M. X. Nguyen. POP: A hybrid point and polygon
rendering system for large data. InProc. IEEE Visualization
2001, pages 45–52, 2001.

[4] J. H. Clark. Hierarchical geometric models for visible sur-
face algorithms.Communications of the ACM, 19(10):547–
554, 1976.

[5] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand. A sur-
vey of visibility for walkthrough applications.Transactions
on Visualization and Computer Graphics, 2002. to appear.

Figure 12: Two parts of the image are zoomed and show that only samples of polygons are rendered. Below, the corresponding parts
of the original scene are rendered by the z-buffer algorithm. We used splat size 4 and left out the precomputation of color values for
better illustration. (This figure is reproduced in color on page 000.)

[6] D. Cohen-Or and E. Zadicario. Visibility streaming for
network-based walkthroughs. InGraphics Interface 1998,
pages 1–7, 1998.

[7] B. Curless. The happy buddha model. Stanford Computer
Graphics Laboratory.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery,
and W. Stuetzle. Multiresolution analysis of arbitrary meshes.
In Computer Graphics (SIGGRAPH 1995 Conference Proc.),
pages 173–182, 1995.

[9] J. El-Sana, N. Sokolovsky, and C. T. Silva. Integrating occlu-
sion culling with view-dependent rendering. InProc. IEEE
Visualization 2001, pages 371–378, 2001.

[10] T. A. Funkhouser. RING: A client-server system for multi-
user virtual environments. InProc. ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics 1995, pages 85–92, 1995.

[11] T. A. Funkhouser. Database management for interactive dis-
play of large architectural models. InGraphics Interface
1996, pages 1–8, Toronto, 1996.

[12] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer vis-
ibility. In Computer Graphics (SIGGRAPH 1993 Conference
Proc.), pages 231–238, 1993.

[13] J. P. Grossman and W. Dally. Point sample rendering. InProc.
Rendering Techniques 1998, pages 181–192, 1998.

[14] P. S. Heckbert and M. Garland. Multiresolution modeling for
fast rendering. InProc. Graphics Interface 1994, pages 43–
50, 1994.

[15] H. Hoppe. Progressive meshes. InComputer Graphics (SIG-
GRAPH 1996 Conference Proc.), pages 99–108, 1996.

[16] M. Levoy and T. Whitted. The use of points as a display
primitive. Technical Report 85-022, Computer Science De-
partment, University of North Carolina, 1985.

[17] P. Lindstrom and V. Pascucci. Visualization of large terrains
made easy. InProc. IEEE Visualization 2001, pages 363–370,
2001.

[18] P. W. C. Maciel and P. Shirley. Visual navigation of large envi-
ronments using textured clusters. InProc. ACM SIGGRAPH
Symposium on Interactive 3D Graphics 1995, pages 95–102,
1995.

[19] Y. Mann and D. Cohen-Or. Selective pixel transmission
for navigating in remote virtual environments. InComputer
Graphics Forum (Proc. EUROGRAPHICS 1997), 1997.

[20] R. Motwani and P. Raghavan.Randomized Algorithms. Cam-

bridge University Press, 1995.
[21] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Sur-

fels: Surface elements as rendering primitives. InComputer
Graphics (SIGGRAPH 2000 Conference Proc.), pages 335–
342, 2000.

[22] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. InComputer Graph-
ics (SIGGRAPH 2000 Conference Proc.), pages 343–352,
2000.

[23] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A viewer
for networked visualization of large, dense models. InProc.
ACM SIGGRAPH Symposium on Interactive 3D Graphics
2001, 2001.

[24] D. Schmalstieg and M. Gervautz. Demand-driven geometry
transmission for distributed virtual environments. InCom-
puter Graphics Forum (Proc. EUROGRAPHICS 1996), num-
ber 3, pages 421–433, 1996.

[25] J. M. Sewell. Managing Complex Models for Computer
Graphics. PhD thesis, University of Cambridge, Queens’ Col-
lege, 1996.

[26] L. Sobierajski Avila and W. Schroeder. Interactive visualiza-
tion of aircraft and power generation engines. InProc. IEEE
Visualization 1997, pages 483–486, 1997.

[27] M. Stamminger and G. Drettakis. Interactive sampling and
rendering for complex and procedural geometry. InProc. Ren-
dering Techniques 2001, pages 151–162, 2001.

[28] S. J. Teller and C. H. Śequin. Visibility preprocessing for in-
teractive walkthroughs. InComputer Graphics (SIGGRAPH
1991 Conference Proc.), pages 61 – 69, 1991.

[29] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed
ray tracing of highly complex models. InRendering Tech-
niques 2001: 12th Eurographics Workshop on Rendering,
pages 277–288, 2001.

[30] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive
rendering with coherent ray tracing. InComputer Graphics
Forum. 20(3), pages 153–164, 2001.

[31] M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide, and
W. Straßer. The randomized z-buffer algorithm: Interactive
rendering of highly complex scenes. InComputer Graphics
(SIGGRAPH 2001 Conference Proc.), pages 361–370, 2001.

[32] J. Wernecke.The Inventor Mentor: Programming Object-
Oriented 3D Graphics with Open Inventor. Addison Wesley,
second edition, 1994.

