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The Liver

■ central metabolic organ
(glucose storage,
detoxication, …)

■ blood: organism↔ liver
by three vascular systems
■ hepatic artery (HA)

supplies oxygen
■ portal vein (PV)

supplies nutrients and
toxins,

■ hepatic vein (HV) drains

■ ∼ 1.5M lobuli (� ≈ 1 mm)
as functional units

HV

PV ∥HA
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Goal

■ blood flow simulation (distribution of e.g. drug or contrast agent)
■ using geometrically realistic model
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1. Introduction

Image Data Acquisition

■ in vivo 3D imaging
■ corrosion casts and µCT (3D)

■ insufficient resolution for lobular scale
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1. Introduction

Generating Vascular Systems

Goal: bridge the resolutional gap

1. obtain geometric representation of real vascular tree structures
(∼150 clinical CT scans)

2. implement algorithm for generating vascular trees
3. perform geometric analysis, evaluate measures of similarity
4. starting from coarsened trees, validate semi-fine generated against

measured trees (validation/postprocessing)
5. starting from measured trees, generate additional resolution

(application)
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2. Constrained Constructive Optimization
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2. Constrained Constructive Optimization

Idea of the Algorithm

[Schreiner et al. 1993]

■ find optimal vascular network for supplying/draining given volume
■ assume homogeneous supply
■ respect coarse anatomic details and organ shape
■ physiologically reasonable assumptions, no angiogenesis model

Input
■ initial tree
■ desired end points ( =̂ connection to lobuli or regions)
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2. Constrained Constructive Optimization

Physical Assumptions

[Schreiner et al. 1993]
Edge radii determined by
■ rγ0 = rγ1 + rγ2 with γ = 3 (Murray’s law)

■ r1 and r2 such that flow resistances of subtrees are balanced

■ Poiseuille’s law for laminar flow

R =
8 · viscosity · length

π · radius4
■ decreasing viscosity for radius < 150µm (Fåhræus-Lindqvist effect)
■ serial and parallel connection of edges (Kirchhoff’s law)
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2. Constrained Constructive Optimization

Physiological Formulation

[Schreiner et al. 1993]

minimize

intravascular volume
+ penalty for nodes outside liver

over

set of vascular trees (topology and geometry)
with constant root radius
supplying given leaf nodes
with given outflow amounts

subject to

physical constraints for radii
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2. Constrained Constructive Optimization

Demo

← →
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2. Constrained Constructive Optimization

Mathematical Formulation

[Schreiner et al. 1993]

Tprev

pleaf

Objective function for adding one leaf node

F(e,psplit) := Vol
�
Tprev ⊕ (pleaf;e,psplit)

�

+ Cdist2(psplit,Λ)

■ extended vascular tree with valid radii (as above)
■ obtained from tree Tprev
■ connecting new leaf node pleaf

■ by splitting edge e ∈ N# edges in Tprev
■ at point psplit ∈ R3

■ penalty term if psplit outside organ Λ
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2. Constrained Constructive Optimization

Implementation

F̃e(psplit) := Vol
�
Tprev ⊕ (pleaf;e,psplit)

�
+ Cdist2(psplit,Λ)

minimized by gradient descent with Armijo step size control.

Computationally expensive

■ bifurcation moved⇒ need to recompute 3 lengths and many radii
■ no analytic derivative wrt. position of bifurcation
■ not clear where (topologically) to introduce new bifurcation (e)
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2. Constrained Constructive Optimization

Implementation

[S. and Preusser 2012]
Multi“scale” procedure
■ 40 candidate edges with closest midpoints
■ ‘rough’ stopping criterion to select 20 candidates
■ ‘fine’ stopping criterion to find best topology
■ simple parallelization (OpenMP) possible

■ consider radii relative to parent
■ caching information during optimization
■ avoid excessive copying of information

Still O(N2 logN) workload for N leaf nodes.
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2. Constrained Constructive Optimization

Results

two vascular systems⇐ disjoint set of leaf nodes, independent CCO
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3. Generating Realistic Vascular Systems

Contents

1. Introduction

2. Constrained Constructive Optimization

3. Generating Realistic Vascular Systems

4. Application: Flow Simulations
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3. Generating Realistic Vascular Systems

Overview

[S. and Preusser 2012]
Goal
■ analyze geometric features in real vascular systems
■ check whether algorithm produces similar ones
■ improve algorithm
Input
■ ∼ 160 human in vivo scans

…
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3. Generating Realistic Vascular Systems

Topological and Geometric Analysis

cf. [Strahler 1957]
Rather than bifurcation orders, consider Strahler-type scheme

1

2 2
1

0

2

0

2

2
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3. Generating Realistic Vascular Systems

Topological and Geometric Analysis

[S. and Preusser 2012]
Geometric features at a single bifurcation

ϕa
ϕb

ϕc

r0
r1

r2

l0 l1

l2

■ evaluate histograms for all datasets per level and feature
■ perform pairwise Kolmogorov-Smirnov test (p = 0.05) for similarity
■ compute percentages and weighted average over Strahler* orders
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3. Generating Realistic Vascular Systems

CCO Postprocessing

[S. and Preusser 2012]

ϕa
ϕb

ϕc

r0
r1

r2

l0 l1

l2

Postprocessing
■ angles between daughters ϕa too small
→ shift in direction of bisector

■ inclination angles ϕb too small
→ change according to measured distribution

Observation
■ real vascular trees differ slightly from CCO output
■ postprocess rather than build into optimization-based construction
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4. Application: Flow Simulations
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4. Application: Flow Simulations

Transport in Vascular Systems

■ consider concentration in blood

■ transport only through vascular structures
■ constant flow velocity per edge (essentially 1D)
■ discretized using Eulerian-Lagrangian Locally Adjoint Method (ELLAM)

[Celia et al. 1990]
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4. Application: Flow Simulations

First Results: Dynamic Flow

PV↘ ↙ HV

mouse CCO model (5000 leaves each)
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4. Application: Flow Simulations

First Results: Dynamic Flow

■ concentration profile color-coded

→ video
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4. Application: Flow Simulations

Outlook

Extend by

■ porous medium model for extravascular space
■ ⇒ 3D transport

■ multiple substances
■ reaction term to model metabolization
■ pharmacokinetics simulation

© Fraunhofer MEVIS L.O. Schwen: Flow Through Algorithmically Generated Vascular Structures



4. Application: Flow Simulations

Outlook

Extend by

■ porous medium model for extravascular space
■ ⇒ 3D transport

■ multiple substances
■ reaction term to model metabolization
■ pharmacokinetics simulation

© Fraunhofer MEVIS L.O. Schwen: Flow Through Algorithmically Generated Vascular Structures



Summary

■ CCO to generate vascular structures
■ comparison to measurements, postprocessing
■ application: blood flow simulation

Contact: ole.schwen@mevis.fraunhofer.de
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